NMR spectroscopic studies of intermediary metabolites of cyclophosphamide. A comprehensive kinetic analysis of the interconversion of cis- and trans-4-hydroxycyclophosphamide with aldophosphamide and the concomitant partitioning of aldophosphamide between irreversible fragmentation and reversible conjugation pathways
Autor: | Gunay Ozkan, Kai Liu Shao, Joan A. Brandt, Gerald Zon, William Egan, Victoria L. Boyd, S. M. Ludeman |
---|---|
Rok vydání: | 1984 |
Předmět: |
Magnetic Resonance Spectroscopy
Chemical Phenomena Fourier Analysis Stereochemistry Metabolite 4-Hydroxycyclophosphamide Aldophosphamide Stereoisomerism Nuclear magnetic resonance spectroscopy Deuterium Enol chemistry.chemical_compound Chemistry Kinetics Reaction rate constant chemistry Drug Discovery Kinetic isotope effect Molecular Medicine Animals Phosphoramide Mustards Cyclophosphamide Cis–trans isomerism Biotransformation |
Zdroj: | Journal of medicinal chemistry. 27(4) |
ISSN: | 0022-2623 |
Popis: | Multinuclear (31P, 13C, 2H, and 1H) Fourier-transform NMR spectroscopy, with and without isotopically enriched materials, was used to identify and quantify, as a function of time, the following intermediary (short-lived) metabolites of the anticancer prodrug cyclophosphamide (1, Scheme I): cis-4-hydroxycyclophosphamide (cis-2), its trans isomer (trans-2), aldophosphamide (3), and its aldehyde-hydrate (5). Under a standard set of reaction conditions (1 M 2,6-dimethylpyridine buffer, pH 7.4, 37 degrees C), the stereospecific deoxygenation of synthetic cis-4-hydroperoxycyclophosphamide (cis-12, 20 mM) with 4 equiv of sodium thiosulfate (Na2S2O3) afforded, after approximately 20 min, a "pseudoequilibrium" distribution of cis-2, 3, 5, and trans-2, i.e., the relative proportions of these reactants (57:4:9:30, respectively) remained constant during their continual disappearance. NMR absorption signals indicative of "iminophosphamide" (8) and enol 6 were not detected (less than 0.5-1% of the synthetic metabolite mixture). A computerized least-squares fitting procedure was applied to the individual 31P NMR derived time courses for conversion of cis-2, 3 plus 5 (i.e., "3"), and trans-2 into acrolein and phosphoramide mustard (4), the latter of which gave an expected array of thiosulfate S-alkylation products (e.g., 16) and other phosphorus-containing materials derived from secondary decomposition reactions. This kinetic analysis gave the individual forward and reverse rate constants for the apparent tautomerization processes, viz., cis-2 in equilibrium "3" in equilibrium trans-2, as well as the rate constant (k3) for the irreversible fragmentation of 3. The values of k3 at pH 6.3, 7.4, and 7.8 were equal to 0.030 +/- 0.004, 0.090 +/- 0.008, and 0.169 +/- 0.006 min-1, respectively. Replacement of the HC(O)CH2 moiety n 3 with HC(O)CD2 led to a primary kinetic isotope effect (kH/kD = 5.6 +/- 0.4) for k3. The apparent half-lives (tau 1/2) for cis-2, "3", and trans-2 under the standard reaction conditions, at "pseudoequilibrium" (constant ratio of cis-2/"3"/trans-2), were each equal to approximately 38 min, which is considerably shorter than the widely cited colorimetrically derived half-lives reported by earlier investigators. The values of tau 1/2 for cis-2, "3", and trans-2 were affected by pH in the same manner as that found for k3 but were relatively insensitive to the presence of either K+, Na+, Ca2+, or Mg2+. The presence of certain primary amines led to marked decreases in tau 1/2 and, in some cases, the formation of acyclic adducts of aldehyde 3.(ABSTRACT TRUNCATED AT 400 WORDS) |
Databáze: | OpenAIRE |
Externí odkaz: |