Extended Conformal Symmetry and Recursion Formulae for Nekrasov Partition Function
Autor: | Shoichi Kanno, Yutaka Matsuo, Hong Zhang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2013 |
Předmět: |
Physics
High Energy Physics - Theory Nuclear and High Energy Physics Pure mathematics Instanton Partition function (quantum field theory) Quiver Toda field theory FOS: Physical sciences Mathematical Physics (math-ph) Function (mathematics) High Energy Physics::Theory High Energy Physics - Theory (hep-th) Conformal symmetry Gauge theory Central charge Mathematical Physics |
Popis: | We derive an infinite set of recursion formulae for Nekrasov instanton partition function for linear quiver U(N) supersymmetric gauge theories in 4D. They have a structure of a deformed version of W_{1+\infty} algebra which is called SH^c algebra (or degenerate double affine Hecke algebra) in the literature. The algebra contains W_N algebra with general central charge defined by a parameter \beta, which gives the $\Omega$ background in Nekrasov's analysis. Some parts of the formulae are identified with the conformal Ward identity for the conformal block function of Toda field theory. Comment: 21 pages, 3 figures; v2: minor modifications, typos corrected, references added; v3: references added, typos corrected; v4: major revision of section 6, to be published in JHEP |
Databáze: | OpenAIRE |
Externí odkaz: |