Regulation of ALT-associated homology-directed repair by polyADP-ribosylation

Autor: Ian D. Waddell, Robert W. Sobol, Kate M. Smith, Justin L. Roncaioli, Felipe da Veiga Leprevost, Song My Hoang, Dattatreya Mellacharevu, Dominique Ray-Gallet, Michelle L. Lynskey, Roderick J. O’Sullivan, Ragini Bhargava, Jonathan Barroso-González, Nicole Kaminski, Geneviève Almouzni, Anne R. Wondisford, Jianfeng Li, Donald J. Ogilvie, Alexey I. Nesvizhskii, Dominic I. James, Callen T. Wallace, Simon C. Watkins, Laura García-Expósito
Přispěvatelé: University of Pittsburgh School of Medicine, Pennsylvania Commonwealth System of Higher Education (PCSHE), University of Manchester [Manchester], University of Michigan [Ann Arbor], University of Michigan System, University of South Alabama, Dynamique du noyau [Institut Curie], Institut Curie [Paris]-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), HAL-SU, Gestionnaire
Jazyk: angličtina
Rok vydání: 2020
Předmět:
MESH: Signal Transduction
Poly Adenosine Diphosphate Ribose
Cell Cycle Proteins
Histones
Poly ADP Ribosylation
0302 clinical medicine
Structural Biology
MESH: RNA
Small Interfering

RNA
Small Interfering

MESH: Histones
0303 health sciences
PARG
MESH: X-linked Nuclear Protein
biology
MESH: Histone Chaperones
DNA
Neoplasm

MESH: Transcription Factors
MESH: Gene Expression Regulation
Neoplastic

Telomere
Chromatin
Cell biology
Gene Expression Regulation
Neoplastic

MESH: Recombinational DNA Repair
Histone
MESH: Poly Adenosine Diphosphate Ribose
MESH: Epithelial Cells
[SDV.BBM.GTP] Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

Poly(ADP-ribose) Polymerases
Signal Transduction
G2 Phase
X-linked Nuclear Protein
MESH: Cell Line
Tumor

Glycoside Hydrolases
DNA repair
DNA damage
MESH: DNA
Neoplasm

Article
MESH: Chromatin
MESH: Telomere Homeostasis
Homology directed repair
03 medical and health sciences
MESH: Cell Cycle Proteins
Cell Line
Tumor

[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry
Molecular Biology/Genomics [q-bio.GN]

MESH: Glycoside Hydrolases
Humans
Histone Chaperones
Molecular Biology
ATRX
030304 developmental biology
MESH: DNA Damage
MESH: Humans
MESH: Poly ADP Ribosylation
MESH: Poly(ADP-ribose) Polymerases
Recombinational DNA Repair
Telomere Homeostasis
Epithelial Cells
MESH: G2 Phase
MESH: Protein Processing
Post-Translational

MESH: HeLa Cells
biology.protein
MESH: Telomere
Protein Processing
Post-Translational

030217 neurology & neurosurgery
DNA Damage
HeLa Cells
Transcription Factors
Zdroj: Nature Structural and Molecular Biology
Nature Structural and Molecular Biology, Nature Publishing Group, 2020, 27 (12), pp.1152-1164. ⟨10.1038/s41594-020-0512-7⟩
Nature Structural & Molecular Biology
Nature Structural and Molecular Biology, 2020, 27 (12), pp.1152-1164. ⟨10.1038/s41594-020-0512-7⟩
Nat Struct Mol Biol
ISSN: 1545-9993
1545-9985
DOI: 10.1038/s41594-020-0512-7⟩
Popis: International audience; The synthesis of poly(ADP-ribose) (PAR) reconfigures the local chromatin environment and recruits DNA-repair complexes to damaged chromatin. PAR degradation by poly(ADP-ribose) glycohydrolase (PARG) is essential for progression and completion of DNA repair. Here, we show that inhibition of PARG disrupts homology-directed repair (HDR) mechanisms that underpin alternative lengthening of telomeres (ALT). Proteomic analyses uncover a new role for poly(ADP-ribosyl)ation (PARylation) in regulating the chromatin-assembly factor HIRA in ALT cancer cells. We show that HIRA is enriched at telomeres during the G2 phase and is required for histone H3.3 deposition and telomere DNA synthesis. Depletion of HIRA elicits systemic death of ALT cancer cells that is mitigated by re-expression of ATRX, a protein that is frequently inactivated in ALT tumors. We propose that PARylation enables HIRA to fulfill its essential role in the adaptive response to ATRX deficiency that pervades ALT cancers.
Databáze: OpenAIRE