Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic
Autor: | Weiss, C., Carriere, M., Fusco, L., Capua, I., Regla-Nava, J. A., Pasquali, M., Scott, J. A., Vitale, F., Unal, M. A., Mattevi, C., Bedognetti, D., Merkoci, A., Tasciotti, E., Yilmazer, A., Gogotsi, Y., Stellacci, F., Delogu, L. G. |
---|---|
Přispěvatelé: | Karlsruhe Institute of Technology (KIT), Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Département Interfaces pour l'énergie, la Santé et l'Environnement (DIESE), University of Trieste, University of Florida [Gainesville] (UF), La Jolla Institute for Immunology [La Jolla, CA, États-Unis], Electrical and Computer Engineering - Rice University, Rice University [Houston], University of Toronto, University of Pennsylvania [Philadelphia], Ankara University, Imperial College London, Sidra Medicine [Doha, Qatar], Institut Catala de Nanociencia i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universitat Autònoma de Barcelona (UAB), Houston Methodist Hospital [Houston, TX, USA], Drexel University, Ecole Polytechnique Fédérale de Lausanne (EPFL), University of Padua, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Università degli studi di Trieste = University of Trieste, University of Pennsylvania, Universitat Autònoma de Barcelona (UAB)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Università degli Studi di Padova = University of Padua (Unipd), The Royal Society, Commission of the European Communities, European Commission, Università degli Studi di Padova, Turkish Academy of Sciences, Generalitat de Catalunya, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), European Research Council, Royal Society (UK), National Science Foundation (US), Agence Nationale de la Recherche (France), Pasquali, Matteo [0000-0001-5951-395X], Unal, Mehmet Altay [0000-0001-8607-5043], Mattevi, Cecilia [0000-0003-0005-0633], Merkoçi, Arben [0000-0003-2486-8085], Tasciotti, Ennio [0000-0003-1187-3205], Yilmazer, Açelya [0000-0003-2712-7450], Gogotsi, Yury [0000-0001-9423-4032], Stellacci, Francesco [0000-0003-4635-6080], Delogu, Lucia Gemma [0000-0002-2329-7260], Pasquali, Matteo, Unal, Mehmet Altay, Mattevi, Cecilia, Merkoçi, Arben, Tasciotti, Ennio, Yilmazer, Açelya, Gogotsi, Yury, Stellacci, Francesco, Delogu, Lucia Gemma |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
[SDV]Life Sciences [q-bio]
General Physics and Astronomy 02 engineering and technology 01 natural sciences Drug Delivery Systems Biomimetics Pandemic Environmental Microbiology Nanotechnology General Materials Science acute respiratory syndrome ComputingMilieux_MISCELLANEOUS Viral Vaccine Vaccination mxenes composite nanosheets General Engineering Masks 021001 nanoscience & nanotechnology 3. Good health Nanomedicine Viruses Perspective virus inactivation Infectious diseases graphene oxide Cytokines carbide mxene 0210 nano-technology Coronavirus Infections COVID-19 Vaccines Coronavirus disease 2019 (COVID-19) viral vectors Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Immunology drinking-water Pneumonia Viral Context (language use) 010402 general chemistry photodynamic inactivation Immunomodulation Betacoronavirus Humans Computer Simulation Nanoscience & Nanotechnology Pandemics Personal Protective Equipment Nanomaterials SARS-CoV-2 field-effect transistor COVID-19 Viral Vaccines Immune modulation 0104 chemical sciences drug-delivery Disinfection Photochemotherapy Healthcare settings |
Zdroj: | ACS Nano ACS Nano, American Chemical Society, 2020, 14 (6), pp.6383-6406. ⟨10.1021/acsnano.0c03697⟩ ACS Nano, 2020, 14 (6), pp.6383-6406. ⟨10.1021/acsnano.0c03697⟩ Digital.CSIC. Repositorio Institucional del CSIC Universidad Pontificia Comillas ICAI-ICADE |
ISSN: | 1936-0851 |
DOI: | 10.1021/acsnano.0c03697⟩ |
Popis: | The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of “nanoimmunity by design” can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics. L.G.D. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 734381 (CARBOimmap), and the University of Padua (Italy) DOR-2020. A.Y. is thankful to the Turkish Academy of Sciences (TUBA) for financial support under the young investigator programme. A.M. thanks funding by the CERCA programme/Generalitat de Catalunya and the Severo Ochoa Centres of Excellence programme and by the Spanish Research Agency (AEI, Grant No. SEV-2017-0706) given to ICN2. C.M. would like to acknowledge the award of funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 819069) and the award of a Royal Society University Research Fellowship (UF160539) by the UK Royal Society. Y.G. was supported by the U.S. National Science Foundation under Grant No. DMR-1740795. M.C. acknowledges the Labex SERENADE funded by the “Investissements d’Avenir” French Government program of the French National Research Agency (Grant No. ANR-11-LABX-0064) through the A*MIDEX project (Grant No. ANR-11-IDEX-0001-02). |
Databáze: | OpenAIRE |
Externí odkaz: |