Spatio-Temporal Segmentation For Radiotherapy Planning
Autor: | François Bidault, Etienne Decencière, Jean Stawiaski |
---|---|
Přispěvatelé: | Centre de Morphologie Mathématique (CMM), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Département de radiothérapie [Gustave Roussy], Institut Gustave Roussy (IGR) |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Watershed
medicine.diagnostic_test Computer science business.industry medicine.medical_treatment ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION Pattern recognition Computed tomography 0102 computer and information sciences 02 engineering and technology Mathematical morphology 01 natural sciences Radiation therapy ComputingMethodologies_PATTERNRECOGNITION 010201 computation theory & mathematics Cut [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] 0202 electrical engineering electronic engineering information engineering Breathing medicine Graph (abstract data type) 020201 artificial intelligence & image processing Segmentation Artificial intelligence business |
Zdroj: | Progress in Industrial Mathematics at ECMI 2008 Progress in Industrial Mathematics at ECMI 2008, 2010, United Kingdom HAL Progress in Industrial Mathematics at ECMI 2008 ISBN: 9783642121098 |
Popis: | This paper presents a segmentation method of 3D time-series images for radiotherapy planning. The aim of this study is to propose some techniques for the segmentation of tumors surrounding or contained in the lungs. The 4D images are produced using a respiration gating procedure and computed tomography. The aim of the segmentation is to follow the tumor movement while the patient is breathing, so that he does not need to hold his respiration during the radiation treatment. The proposed technique is based on mathematical morphology and graph cuts. It uses a 4D watershed algorithm, combined with graph-based techniques to delineate the tumors in the time-series. The differences between different classical spatio-temporal segmentation algorithms will be highlighted, and conclusions on the related trade-offs between speed and precision will be drawn. |
Databáze: | OpenAIRE |
Externí odkaz: |