Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication
Autor: | Al-Amin Ahmed Simon, Lyle Jones, Bahareh Badamchi, Maria Mitkova, I.J. van Rooyen, Harish Subbaraman, Yoshifumi Sakaguchi, H. Kunold |
---|---|
Rok vydání: | 2021 |
Předmět: |
Fabrication
Materials science Chalcogenide Science Energy-dispersive X-ray spectroscopy Sintering Chalcogenide glass Nanoparticle Nanotechnology 02 engineering and technology 01 natural sciences Article Contact angle chemistry.chemical_compound 0103 physical sciences Electronic devices Thin film 010302 applied physics Multidisciplinary 021001 nanoscience & nanotechnology Design synthesis and processing chemistry Medicine Nanoparticles 0210 nano-technology |
Zdroj: | Scientific Reports Scientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
ISSN: | 2045-2322 |
Popis: | Chalcogenide glasses are one of the most versatile materials that have been widely researched because of their flexible optical, chemical, electronic, and phase change properties. Their application is usually in the form of thin films, which work as active layers in sensors and memory devices. In this work, we investigate the formulation of nanoparticle ink of Ge–Se chalcogenide glasses and its potential applications. The process steps reported in this work describe nanoparticle ink formulation from chalcogenide glasses, its application via inkjet printing and dip-coating methods and sintering to manufacture phase change devices. We report data regarding nanoparticle production by ball milling and ultrasonication along with the essential characteristics of the formed inks, like contact angle and viscosity. The printed chalcogenide glass films were characterized by Raman spectroscopy, X-ray diffraction, energy dispersive spectroscopy and atomic force microscopy. The printed films exhibited similar compositional, structural, electronic and optical properties as the thermally evaporated thin films. The crystallization processes of the printed films are discussed compared to those obtained by vacuum thermal deposition. We demonstrate the formation of printed thin films using nanoparticle inks, low-temperature sintering and proof for the first time, their application in electronic and photonic temperature sensors utilizing their phase change property. This work adds chalcogenide glasses to the list of inkjet printable materials, thus offering an easy way to form arbitrary device structures for optical and electronic applications. |
Databáze: | OpenAIRE |
Externí odkaz: |