Decoration of SiO2 and Fe3O4 Nanoparticles onto the Surface of MWCNT-Grafted Glass Fibers: A Simple Approach for the Creation of Binary Nanoparticle Hierarchical and Multifunctional Composite Interphases

Autor: Lazaros Tzounis, Markos Petousis, Nectarios Vidakis, Dimitrios G. Papageorgiou
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Nanomaterials
Volume 10
Issue 12
Nanomaterials, Vol 10, Iss 2500, p 2500 (2020)
ISSN: 2079-4991
Popis: We report on a versatile method for chemically grafting multiwalled carbon nanotubes (MWCNTs) onto the surface of conventional glass fibers (GFs), as well as depositing further silica (SiO2) or superparamagnetic (SPM) magnetite (Fe3O4) nanoparticles (NPs) creating novel hierarchical reinforcements. The CNT-grafted GFs (GF-CNT) were utilized further as the support to decorate nano-sized SiO2 or Fe3O4 via electrostatic interactions, resulting finally into double hierarchy reinforcements. SiO2 NPs were first used as model nano-particulate objects to investigate the interfacial adhesion properties of binary coated GFs (denoted as GF-CNT/SiO2) in epoxy matrix via single fiber pull-out (SFPO) tests. The results indicated that the apparent interfacial shear strength (IFSS or &tau
app) was significantly increased compared to the GF-CNT. Fe3O4 NPs were assembled also onto CNT-grafted GFs resulting into GF-CNT/Fe3O4. The fibers exhibited a magnetic response upon being exposed to an external magnet. Scanning electron microscopy (SEM) revealed the surface morphologies of the different hierarchical fibers fabricated in this work. The interphase microstructure of GF-CNT and GF-CNT/SiO2 embedded in epoxy was investigated by transmission electron microscopy (TEM). The hybrid and hierarchical GFs are promising multifunctional reinforcements with appr. 85% increase of the IFSS as compared to typical amino-silane modified GFs. It could be envisaged that, among other purposes, GF-CNT/Fe3O4 could be potentially recyclable reinforcements, especially when embedded in thermoplastic polymer matrices.
Databáze: OpenAIRE