Response of exact solutions of the nonlinear Schrodinger equation to small perturbations in a class of complex external potentials having supersymmetry and parity-time symmetry

Autor: Bogdan Mihaila, Fred Cooper, Niurka R. Quintero, Franz G. Mertens, Avadh Saxena, Edward Arévalo, John F. Dawson, Avinash Khare
Přispěvatelé: Universidad de Sevilla. Departamento de Física Aplicada I, Universidad de Sevilla. FQM-207 Física Atómica y Molecular
Rok vydání: 2017
Předmět:
Zdroj: idUS. Depósito de Investigación de la Universidad de Sevilla
instname
DOI: 10.48550/arxiv.1707.01574
Popis: We discuss the effect of small perturbation on nodeless solutions of the nonlinear \Schrodinger\ equation in 1+1 dimensions in an external complex potential derivable from a parity-time symmetric superpotential that was considered earlier [Phys.~Rev.~E 92, 042901 (2015)]. In particular we consider the nonlinear partial differential equation $\{ \, \rmi \, \partial_t + \partial_x^2 + g |\psi(x,t)|^2 - V^{+}(x) \, \} \, \psi(x,t) = 0$, where $V^{+}(x) = \qty( -b^2 - m^2 + 1/4 ) \, \sech^2(x) - 2 i \, m \, b \, \sech(x) \, \tanh(x)$ represents the complex potential. Here we study the perturbations as a function of $b$ and $m$ using a variational approximation based on a dissipation functional formalism. We compare the result of this variational approach with direct numerical simulation of the equations. We find that the variational approximation works quite well at small and moderate values of the parameter $b m$ which controls the strength of the imaginary part of the potential. We also show that the dissipation functional formalism is equivalent to the generalized traveling wave method for this type of dissipation.
Comment: 18 pages, 6 figures
Databáze: OpenAIRE