Deterministic construction of nodal surfaces within quantum Monte Carlo: the case of FeS

Autor: Yann Garniron, Pierre-François Loos, Michel Caffarel, Anthony Scemama
Přispěvatelé: Groupe Méthodes et outils de la chimie quantique (LCPQ) (GMO), Laboratoire de Chimie et Physique Quantiques (LCPQ), Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche sur les Systèmes Atomiques et Moléculaires Complexes (IRSAMC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Quantum Monte Carlo
FOS: Physical sciences
Electronic structure
010402 general chemistry
full configuration interaction
01 natural sciences
diffusion Monte Carlo
Electronic states
[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]
Condensed Matter - Strongly Correlated Electrons
Simple (abstract algebra)
Physics - Chemical Physics
0103 physical sciences
Statistical physics
Physical and Theoretical Chemistry
Wave function
Physics
Chemical Physics (physics.chem-ph)
010304 chemical physics
Strongly Correlated Electrons (cond-mat.str-el)
Configuration interaction
Computational Physics (physics.comp-ph)
Symmetry (physics)
0104 chemical sciences
Computer Science Applications
Condensed Matter - Other Condensed Matter
quantum Monte Carlo
Diffusion Monte Carlo
[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]
multireference trial wave function
Physics - Computational Physics
Other Condensed Matter (cond-mat.other)
Zdroj: Journal of Chemical Theory and Computation
Journal of Chemical Theory and Computation, American Chemical Society, 2018, 14 (3), pp.1395-1402. ⟨10.1021/acs.jctc.7b01250⟩
ISSN: 1549-9618
1549-9626
DOI: 10.1021/acs.jctc.7b01250⟩
Popis: In diffusion Monte Carlo (DMC) methods, the nodes (or zeroes) of the trial wave function dictate the magnitude of the fixed-node (FN) error. Within standard DMC implementations, they emanate from short multideterminant expansions, \textit{stochastically} optimized in the presence of a Jastrow factor. Here, following a recent proposal, we follow an alternative route by considering the nodes of selected configuration interaction (sCI) expansions built with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) algorithm. In contrast to standard implementations, these nodes can be \textit{systematically} and \textit{deterministically} improved by increasing the size of the sCI expansion. The present methodology is used to investigate the properties of the transition metal sulfide molecule FeS. This apparently simple molecule has been shown to be particularly challenging for electronic structure theory methods due to the proximity of two low-energy quintet electronic states of different spatial symmetry. In particular, we show that, at the triple-zeta basis set level, all sCI results --- including those extrapolated at the full CI (FCI) limit --- disagree with experiment, yielding an electronic ground state of $^{5}\Sigma^+$ symmetry. Performing FN-DMC simulation with sCI nodes, we show that the correct $^{5}\Delta$ ground state is obtained if sufficiently large expansions are used. Moreover, we show that one can systematically get accurate potential energy surfaces and reproduce the experimental dissociation energy as well as other spectroscopic constants.
Comment: 8 pages, 2 figure and 4 tables
Databáze: OpenAIRE