Influence of viscoelastic and viscous absorption on ultrasonic wave propagation in cortical bone: Application to axial transmission

Autor: Mai-Ba Vu, Maryline Talmant, Christian Soize, Guillaume Haiat, Christophe Desceliers, Quentin Grimal, Salah Naili
Přispěvatelé: Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Imagerie Paramétrique (LIP), Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR58-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Laboratoire de Modélisation et Simulation Multi Echelle ( MSME ), Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Est Créteil Val-de-Marne - Paris 12 ( UPEC UP12 ) -Université Paris-Est Marne-la-Vallée ( UPEM ), Laboratoire d'Imagerie Paramétrique ( LIP ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -IFR58-Centre National de la Recherche Scientifique ( CNRS )
Rok vydání: 2010
Předmět:
Absorption (acoustics)
ultrasonic absorption
[ SPI.MECA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]
Acoustics and Ultrasonics
Physics::Medical Physics
VELOCITY-MEASUREMENTS
bone
01 natural sciences
biomedical ultrasonics
Quantitative Biology::Cell Behavior
0302 clinical medicine
Bone Density
Bone Marrow
Ultrasonics
Composite material
acoustics
Anisotropy
010301 acoustics
viscoelasticity
Ultrasonography
[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph]
Viscosity
HUMAN FEMUR
[SPI.MECA.BIOM]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph]
[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]
TIME-DOMAIN
[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
medicine.anatomical_structure
[ SPI.MECA.BIOM ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph]
SPEED MEASUREMENTS
Material properties
Porosity
Materials science
Quantitative Biology::Tissues and Organs
Acoustics
Finite Element Analysis
Viscoelastic Substances
Viscous liquid
ultrasonic velocity
Models
Biological

Bone and Bones
Viscoelasticity
Absorption
03 medical and health sciences
Arts and Humanities (miscellaneous)
ultrasonic propagation
0103 physical sciences
medicine
Animals
Humans
Computer Simulation
[ PHYS.MECA.ACOU ] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]
INTRACORTICAL POROSITY
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
FREQUENCY-DEPENDENT ATTENUATION
Isotropy
TRABECULAR BONE
IN-VITRO
time-domain analysis
BROAD-BAND ATTENUATION
MINERAL DENSITY
Cortical bone
Ultrasonic sensor
030217 neurology & neurosurgery
ultrasonic transmission
Zdroj: Journal of the Acoustical Society of America
Journal of the Acoustical Society of America, 2010, 127 (4), pp.2622-2634. ⟨10.1121/1.3353091⟩
Journal of the Acoustical Society of America, Acoustical Society of America, 2010, 127 (4), pp.2622-2634. ⟨10.1121/1.3353091⟩
Journal of the Acoustical Society of America, Acoustical Society of America, 2010, 127 (4), pp.2622-2634. 〈10.1121/1.3353091〉
ISSN: 0001-4966
1520-8524
DOI: 10.1121/1.3353091
Popis: International audience; Cortical bone and the surrounding soft tissues are attenuating and heterogeneous media, which might affect the signals measured with axial transmission devices. This work aims at evaluating the effect of the heterogeneous acoustic absorption in bone and in soft tissues on the bone ultrasonic response. Therefore, a two-dimensional finite element time-domain method is derived to model transient wave propagation in a three-layer medium composed of an inhomogeneous transverse isotropic viscoelastic solid layer, sandwiched between two viscous fluid layers. The model couples viscous acoustic propagation in both fluid media with the anisotropic viscoelastic response of the solid. A constant spatial gradient of material properties is considered for two values of bone thicknesses (0.6 and 4 mm). In the studied configuration, absorption in the surrounding fluid tissues does not affect the results, whereas bone viscoelastic properties have a significant effect on the first arriving signal (FAS) velocity. For a thin bone, the FAS velocity is governed by the spatially averaged bone properties. For a thick bone, the FAS velocity may be predicted using a one-dimensional model.
Databáze: OpenAIRE