Increasing paths in countable graphs

Autor: Bradley Elliott, Andrii Arman, Vojtěch Rödl
Rok vydání: 2021
Předmět:
Zdroj: Journal of Combinatorial Theory, Series A. 183:105491
ISSN: 0097-3165
DOI: 10.1016/j.jcta.2021.105491
Popis: In this paper we study variations of an old result by M\"{u}ller, Reiterman, and the last author stating that a countable graph has a subgraph with infinite degrees if and only if in any labeling of the vertices (or edges) of this graph by positive integers we can always find an infinite increasing path. We study corresponding questions for hypergraphs and directed graphs. For example we show that the condition that a hypergraph contains a subhypergraph with infinite degrees is equivalent to the condition that any vertex labeling contains an infinite increasing loose path. We also find an equivalent condition for a graph to have a property that any vertex labeling with positive integers contains a path of arbitrary finite length, and we study related problems for oriented graphs and labelings with $\mathbb{Z}$ (instead of $\mathbb{N}$). For example, we show that for every simple hypergraph, there is a labelling of its edges by $\mathbb{Z}$ that forbids one-way infinite increasing paths.
Comment: 27 pages, 3 figures
Databáze: OpenAIRE