Investigation of hindbrain activity during active locomotion reveals inhibitory neurons involved in sensorimotor processing
Autor: | Urs Lucas Böhm, Claire Wyart, Kristen E. Severi |
---|---|
Rok vydání: | 2018 |
Předmět: |
0301 basic medicine
Cerebellum animal structures Population lcsh:Medicine Hindbrain Sensory system Motor Activity Biology Stimulus (physiology) Article Animals Genetically Modified 03 medical and health sciences Calcium imaging medicine Animals Premovement neuronal activity lcsh:Science education Zebrafish Swimming Neurons education.field_of_study Multidisciplinary lcsh:R Brain biology.organism_classification Rhombencephalon 030104 developmental biology medicine.anatomical_structure Spinal Cord Larva lcsh:Q Sensorimotor Cortex Single-Cell Analysis Neuroscience Locomotion Psychomotor Performance |
Zdroj: | Scientific Reports Scientific Reports, Vol 8, Iss 1, Pp 1-11 (2018) |
ISSN: | 2045-2322 |
DOI: | 10.1038/s41598-018-31968-4 |
Popis: | Locomotion in vertebrates relies on motor circuits in the spinal cord receiving inputs from the hindbrain to execute motor commands while dynamically integrating proprioceptive sensory feedback. The spatial organization of the neuronal networks driving locomotion in the hindbrain and role of inhibition has not been extensively investigated. Here, we mapped neuronal activity with single-cell resolution in the hindbrain of restrained transgenic Tg(HuC:GCaMP5G) zebrafish larvae swimming in response to whole-field visual motion. We combined large-scale population calcium imaging in the hindbrain with simultaneous high-speed recording of the moving tail in animals where specific markers label glycinergic inhibitory neurons. We identified cells whose activity preferentially correlates with the visual stimulus or motor activity and used brain registration to compare data across individual larvae. We then morphed calcium imaging data onto the zebrafish brain atlas to compare with known transgenic markers. We report cells localized in the cerebellum whose activity is shut off by the onset of the visual stimulus, suggesting these cells may be constitutively active and silenced during sensorimotor processing. Finally, we discover that the activity of a medial stripe of glycinergic neurons in the domain of expression of the transcription factor engrailed1b is highly correlated with the onset of locomotion. Our efforts provide a high-resolution, open-access dataset for the community by comparing our functional map of the hindbrain to existing open-access atlases and enabling further investigation of this population’s role in locomotion. |
Databáze: | OpenAIRE |
Externí odkaz: |