Automatic Generation of Web Advertising Layouts: A Synthetic Dataset and a Deep Learning Baseline Model

Autor: Hubert Cardot, R. Carletto, Nicolas Ragot
Přispěvatelé: Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT), Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Ragot, Nicolas, Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Rok vydání: 2021
Předmět:
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI]
Computer science
business.industry
Deep learning
[INFO.INFO-NE] Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
[INFO.INFO-TT] Computer Science [cs]/Document and Text Processing
Baseline model
[INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE]
Machine learning
computer.software_genre
Document layout
[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI]
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Open source dataset
[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV]
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
Residual blocks
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
Deep neural networks
Web Advertising
Artificial intelligence
business
computer
Zdroj: 11th International Conference on Pattern Recognition Systems
11th International Conference on Pattern Recognition Systems, Mar 2021, Curicó, Chile
DOI: 10.1049/icp.2021.1443
Popis: International audience; Automatic generation of advertising layouts shows high economic interest, but as identified with our industrial partner, there is no public document layout dataset that matches this particular application. In this context, we produced two synthetic datasets that allow both the evaluation and training of any learning model on web advertising layout generation, and a small dataset of real cases to demonstrate the contribution of our work. We compared the results obtained by different learning models on the real cases, with and without prior use of our synthetic datasets, and our results show that these datasets allow to build and decisively improve models for the generation of real-world advertising layouts. Our three datasets, as well as useful data processing tools, are
Databáze: OpenAIRE