BRAF inhibitors suppress apoptosis through off-target inhibition of JNK signaling

Autor: Ana M. Ciurea, Rosamaria Ruggieri, Stephen E. Ullrich, Deepavali Chakravarti, Marco L. Leung, Monica Restrepo, Charles H. Adelmann, Kevin B. Kim, David Dwyer, Larissa R. Stewart, Kenneth Y. Tsai, Karin Ehrenreiter, Scarlett B. Ferguson, Manuela Baccarini, Elsa R. Flores, Grace Ching, Sandra S. Ojeda, Jonathan L. Curry, Lili Du, Madeleine Duvic, Harina Vin, Kevin N. Dalby, Vida Chitsazzadeh, Kristen Richards, Victor G. Prieto
Rok vydání: 2013
Předmět:
Zdroj: eLife, Vol 2 (2013)
eLife
ISSN: 2050-084X
Popis: Vemurafenib and dabrafenib selectively inhibit the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) kinase, resulting in high response rates and increased survival in melanoma. Approximately 22% of individuals treated with vemurafenib develop cutaneous squamous cell carcinoma (cSCC) during therapy. The prevailing explanation for this is drug-induced paradoxical ERK activation, resulting in hyperproliferation. Here we show an unexpected and novel effect of vemurafenib/PLX4720 in suppressing apoptosis through the inhibition of multiple off-target kinases upstream of c-Jun N-terminal kinase (JNK), principally ZAK. JNK signaling is suppressed in multiple contexts, including in cSCC of vemurafenib-treated patients, as well as in mice. Expression of a mutant ZAK that cannot be inhibited reverses the suppression of JNK activation and apoptosis. Our results implicate suppression of JNK-dependent apoptosis as a significant, independent mechanism that cooperates with paradoxical ERK activation to induce cSCC, suggesting broad implications for understanding toxicities associated with BRAF inhibitors and for their use in combination therapies. DOI: http://dx.doi.org/10.7554/eLife.00969.001
eLife digest Over 50% of melanomas, a highly lethal form of skin cancer, carry mutations in a gene called BRAF. The BRAF gene encodes an enzyme that helps to regulate the proliferation of cells, but mutations in this gene lead to the excessive proliferation that is seen in cancer. Clinical trials have shown that a drug called vemurafenib can be used to treat patients who carry the mutated BRAF genes and go on to develop melanoma, but around one fifth of these patients developed another type of skin cancer called cSCC (cutaneous squamous cell carcinoma). The cSCC tumors often develop in areas where the sun has damaged the patient’s skin, and it is thought that their growth is then accelerated by vemurafenib activating another enzyme, ERK, which causes the excessive proliferation of skin cells. Vin et al. have now found that vemurafenib might also cause cSCC tumors by blocking another signaling pathway. The experiments were performed in human cells and also in mice, and the results were then verified in human cSCC samples. Cells that are exposed to UV radiation usually die, but when treated with vemurafenib, some 70% of the cells that would have died instead survived. The stress from the UV radiation activates the JNK signaling pathway, which causes the irradiated cells to die. However, Vin et al. found that cSCC cells had very low levels of JNK signaling because treatment with vemurafenib had the unintended effect of inhibiting three enzymes that are needed to fully activate the JNK signaling pathway. Vin et al. estimate that suppression of JNK signaling and cell death is responsible for about 17.6 to 40% of the effect on cSCC growth seen in melanoma patients, with activation of the ERK pathway accounting for the rest. These unexpected findings suggest that combining vemurafenib treatment with radiation or chemotherapy should be done with caution as these effects could affect their efficacy. It also suggests that future drugs should be designed in a way that avoids these types of effects by making sure they do not inhibit important ‘off-target’ enzymes. DOI: http://dx.doi.org/10.7554/eLife.00969.002
Databáze: OpenAIRE