Anisotropic Triebel–Lizorkin spaces and wavelet coefficient decay over one-parameter dilation groups, I

Autor: Sarah Koppensteiner, Jordy Timo van Velthoven, Felix Voigtlaender
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Monatshefte für Mathematik, 201(2)
ISSN: 0026-9255
Popis: This paper provides maximal function characterizations of anisotropic Triebel–Lizorkin spaces associated to general expansive matrices for the full range of parameters $$p \in (0,\infty )$$ p ∈ ( 0 , ∞ ) , $$q \in (0,\infty ]$$ q ∈ ( 0 , ∞ ] and $$\alpha \in {\mathbb {R}}$$ α ∈ R . The equivalent norm is defined in terms of the decay of wavelet coefficients, quantified by a Peetre-type space over a one-parameter dilation group. As an application, the existence of dual molecular frames and Riesz sequences is obtained; the wavelet systems are generated by translations and anisotropic dilations of a single function, where neither the translation nor dilation parameters are required to belong to a discrete subgroup. Explicit criteria for molecules are given in terms of mild decay, moment, and smoothness conditions.
Databáze: OpenAIRE