On the coefficients of triple product $L$-functions
Autor: | Ayyadurai Sankaranarayanan, Guangshi Lü |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Mathematics::Number Theory General Mathematics 010102 general mathematics Holomorphic function 11F66 Eigenfunction 11F30 01 natural sciences Cusp form Algebra Fourier coefficients of automorphic forms symbols.namesake Modular group Triple product 0103 physical sciences symbols Perron's formula 010307 mathematical physics Dirichlet series triple product $L$-function 0101 mathematics Mathematics |
Zdroj: | Rocky Mountain J. Math. 47, no. 2 (2017), 553-570 |
ISSN: | 0035-7596 |
Popis: | In this paper, we investigate the average behavior of coefficients of the triple product $L$-function $L(f \otimes f \otimes f,s)$ attached to a primitive holomorphic cusp form $f(z)$ of weight~$k$ for the full modular group $SL(2, \Z )$. Here we call $f(z)$ a primitive cusp form if it is an eigenfunction of all Hecke operators simultaneously. |
Databáze: | OpenAIRE |
Externí odkaz: |