$2$-Neighbour-Transitive Codes with Small Blocks of Imprimitivity
Autor: | Neil I. Gillespie, Cheryl E. Praeger, Daniel R. Hawtin |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
Transitive relation
Applied Mathematics Minimum distance 0102 computer and information sciences 01 natural sciences Theoretical Computer Science Combinatorics Corollary Computational Theory and Mathematics Hamming graph 010201 computation theory & mathematics FOS: Mathematics 05E18 94B25 51E05 Discrete Mathematics and Combinatorics Partition (number theory) Mathematics - Combinatorics Combinatorics (math.CO) Geometry and Topology Alphabet Affine action Mathematics |
Zdroj: | Gillespie, N I, Hawtin, D R & Praeger, C E 2020, ' 2-neighbour-transitive codes with small blocks of imprimitivity ', Electronic Journal of Combinatorics, vol. 27, no. 1, P1.42 . https://doi.org/10.37236/8040 |
Popis: | A code C in the Hamming graph Γ = H(m, q) is a subset of the vertex set V Γ of the Hamming graph; the elements of C are called codewords. Any such code C induces a partition {C, C1, …, Cρ} of V Γ, where ρ is the covering radius of the code, based on the distance each vertex is to its nearest codeword. For s ∈ {1, …, ρ} and X ≤ Aut(C), if X is transitive on each of C, C1, …, Cs, then C is said to be (X, s)-neighbour-transitive. In particular, C is said to be X-completely transitive if C is (X, ρ)-neighbour-transitive. It is known that for any (X, 2)-neighbour-transitive code with minimum distance at least 5, either i) X is faithful on the set of coordinate entries, ii) C is X-alphabet-almost-simple or iii) C is X-alphabet-affine. Classifications of (X, 2)-neighbour-transitive codes in the first two categories having minimum distance at least 5 and 3, respectively, have been achieved in previous papers. Hence this paper considers case iii). Let q = pdm and identify the vertex set of H(m, q) with Fdm p. The main result of this paper classifies (X, 2)-neighbour-transitive codes with minimum distance at least 5 that contain, as a block of imrimitivity for the action of X on C, an Fp-subspace of Fdm p of dimension at most d. When considering codes with minimum distance at least 5, X-completely transitive codes are a proper subclass of (X, 2)-neighbour-transitive codes. This leads, as a corollary of the main result, to a solution of a problem posed by Giudici in 1998 on completely transitive codes. |
Databáze: | OpenAIRE |
Externí odkaz: |