Certain novel estimates within fractional calculus theory on time scales
Autor: | Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, Jian-Mei Shen, Saima Rashid |
---|---|
Rok vydání: | 2020 |
Předmět: |
riemann-liouville fractional integral
čebyšev inequality lcsh:Mathematics General Mathematics time scale Scale (descriptive set theory) Mathematics::Spectral Theory Type (model theory) lcsh:QA1-939 Fractional calculus Operator (computer programming) Applied mathematics pólya-szegö type inequality Mathematics |
Zdroj: | AIMS Mathematics, Vol 5, Iss 6, Pp 6073-6086 (2020) |
ISSN: | 2473-6988 |
DOI: | 10.3934/math.2020390 |
Popis: | The key purpose of this study is to suggest a delta Riemann-Liouville (RL) fractional integral operators for deriving certain novel refinements of Pólya-Szegö and Čebyšev type inequalities on time scales. Some new Pólya-Szegö, Čebyšev and extended Čebyšev inequalities via delta-RL fractional integral operator on a time scale that captures some continuous and discrete analogues in the relative literature. New explicit bounds for unknown functions concerned are obtained due to the presented inequalities. |
Databáze: | OpenAIRE |
Externí odkaz: |