MutS protein-based fiber optic particle plasmon resonance biosensor for detecting single nucleotide polymorphisms
Autor: | Loan Thi Ngo, Lai-Kwan Chau, Ting Chou Chang, Yen Ta Tseng, Pao Lin Kuo, Tze Ta Huang, Wei Kai Wang |
---|---|
Rok vydání: | 2021 |
Předmět: |
Optical fiber
Materials science Base pair DNA Single-Stranded Metal Nanoparticles Biosensing Techniques 02 engineering and technology Gene mutation Polymorphism Single Nucleotide 01 natural sciences Biochemistry Analytical Chemistry law.invention Limit of Detection law MutS Proteins Humans Point Mutation Fiber Surface plasmon resonance Optical Fibers beta-Thalassemia 010401 analytical chemistry Reference Standards Surface Plasmon Resonance 021001 nanoscience & nanotechnology 0104 chemical sciences Core (optical fiber) Biophysics Gold 0210 nano-technology Biosensor Heteroduplex |
Zdroj: | Analytical and Bioanalytical Chemistry. 413:3329-3337 |
ISSN: | 1618-2650 1618-2642 |
Popis: | A new biosensing method is presented to detect gene mutation by integrating the MutS protein from bacteria with a fiber optic particle plasmon resonance (FOPPR) sensing system. In this method, the MutS protein is conjugated with gold nanoparticles (AuNPs) deposited on an optical fiber core surface. The target double-stranded DNA containing an A and C mismatched base pair in a sample can be captured by the MutS protein, causing increased absorption of green light launching into the fiber and hence a decrease in transmitted light intensity through the fiber. As the signal change is enhanced through consecutive total internal reflections along the fiber, the limit of detection for an AC mismatch heteroduplex DNA can be as low as 0.49 nM. Because a microfluidic chip is used to contain the optical fiber, the narrow channel width allows an analysis time as short as 15 min. Furthermore, the label-free and real-time nature of the FOPPR sensing system enables determination of binding affinity and kinetics between MutS and single-base mismatched DNA. The method has been validated using a heterozygous PCR sample from a patient to determine the allelic fraction. The obtained allelic fraction of 0.474 reasonably agrees with the expected allelic fraction of 0.5. Therefore, the MutS-functionalized FOPPR sensor may potentially provide a convenient quantitative tool to detect single nucleotide polymorphisms in biological samples with a short analysis time at the point-of-care sites. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |