Polyacrylonitrile Fiber as Matrix for Immunodiagnostics

Autor: Richa Jackeray, Harpal Singh, Sruti Chattopadhyay, Swati Jain, Zainul Abid
Rok vydání: 2012
Předmět:
Zdroj: Advances in Immunoassay Technology
DOI: 10.5772/38026
Popis: Accurate assessment of various clinical, elemental, chemical antigenic substances from different sources is imperative for monitoring, preventive and treatment measures. Instrumental techniques, chromatographic analysis and immunological assays have progressed for the accurate measurement of various analytes over last decades [N. C. Van de Merbel, 2008; R. M. Lequin 2005; R. M. Twyman 2005; H. Richardson 1998; J. Garcia-de-Lomas 1997]. Immunoassays provide an easy, simple and sensitive route for the precise determination of analytical concentration. They utilize the concept of high specificity of antibodies to their analogues antigen forming a complex which can be detected using secondary antibody (Ab) coupled with certain labels. These markers or labeling agents can be radionuclides, chemiluminescent substrates, fluorophores or enzymes leading to measurable results. In the areas of safety regulations, instrumentation and convenience of protocol, enzyme immunoassays have easily surpassed others over the years. Enzyme catalyzed immunochemical test had caught the imagination of researchers leading to development of numerous immunoassays over the years. The future of enzyme immunoassays will bring more rapid test results with simplified procedures catering to wider audience for clinical applications. Extension of basic concept may also encompass a broader consumer-base consisting of increasing number of potential users which will transcend boundaries of technical disciplines [Maggio, E. T. 1979]. The following introduction descibes enzyme immunoassays in brief with emphasis on polymeric matrices as solid support in ELISA. This chapter describes the designing of solid phase immunoassay using surface functionalized polyacrylonitrile fibers for the sensitive and specific determination of various antibodies. Pendent nitrile groups on polyacrylonitrile fibres were successfully reduced to generate amino groups on the surface of the fibers. The newly formed amino groups of the fibers were activated by a bi-functional spacer-glutraldehyde for the covalent linking of antibodies. Sandwich immuno-complex was developed on these PAN fibers which provided high sensitivity, specificity and reproducibility for the detection of various small analytes.
Databáze: OpenAIRE