Fast COVID-19 versus H1N1 screening using Optimized Parallel Inception

Autor: Alireza Tavakolian, Farshid Hajati, Alireza Rezaee, Amirhossein Oliaei Fasakhodi, Shahadat Uddin
Rok vydání: 2021
Předmět:
Zdroj: Expert systems with applications. 204
ISSN: 0957-4174
Popis: COVID-19 and swine-origin influenza A (H1N1) are both pandemics that sparked significant concern worldwide. Since these two diseases have common symptoms, a fast COVID-19 versus H1N1 screening helps better manage patients at healthcare facilities. We present a novel deep model, called Optimized Parallel Inception, for fast screening of COVID-19 and H1N1 patients. We also present a Semi-supervised Generative Adversarial Network (SGAN) to address the problem related to the smaller size of the COVID-19 and H1N1 research data. To evaluate the proposed models, we have merged two separate COVID-19 and H1N1 data from different sources to build a new dataset. The created dataset includes 4,383 positive COVID-19 cases, 989 positive H1N1 cases, and 1,059 negative cases. We applied SGAN on this dataset to remove issues related to unequal class densities. The experimental results show that the proposed model's screening accuracy is 99.2% and 99.6% for COVID-19 and H1N1, respectively. According to our analysis, the most significant symptoms and underlying chronic diseases for COVID-19 versus H1N1 screening are dry cough, breathing problems, diabetes, and gastrointestinal.
Databáze: OpenAIRE