Dwarf galaxies in the Perseus Cluster: further evidence for a disc origin for dwarf ellipticals
Autor: | Duncan A. Forbes, David J. E. Floyd, Samantha J. Penny, Kevin A. Pimbblet |
---|---|
Rok vydání: | 2014 |
Předmět: |
Physics
kinematics and dynamics [Galaxies] structure [Galaxies] Velocity dispersion Astronomy FOS: Physical sciences Astronomy and Astrophysics Astrophysics clusters: general [Galaxies] evolution [Galaxies] Astrophysics - Astrophysics of Galaxies Galaxy dwarf [Galaxies] Space and Planetary Science Astrophysics of Galaxies (astro-ph.GA) Elliptical galaxy Surface brightness Brightest cluster galaxy Disc clusters: individual: perseus cluster [Galaxies] Galaxy cluster Dwarf galaxy |
Zdroj: | Penny, S J, Forbes, D A, Pimbblet, K A & Floyd, D J E 2014, ' Dwarf galaxies in the Perseus Cluster : further evidence for a disc origin for dwarf ellipticals ', Monthly Notices of the Royal Astronomical Society, vol. 443, no. 4, pp. 3381-3387 . https://doi.org/10.1093/mnras/stu1397 |
DOI: | 10.48550/arxiv.1407.2368 |
Popis: | We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galaxies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $\sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($\mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($\sigma_{0} = 33.9 \pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 \pm 0.10$ kpc), and Sersic index ($n= 1.2 \pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population. Comment: 7 pages, 4 figures, accepted for publication in MNRAS |
Databáze: | OpenAIRE |
Externí odkaz: |