Influence of microstructure and mechanical properties on the tribological behavior of reactive arc deposited Zr-Si-N coatings at room and high temperature
Autor: | Leonardo Pelcastre, Konstantinos D. Bakoglidis, Kumar Yalamanchili, Magnus Odén, M.P. Johansson Jõesaar, Joan Josep Roa, Emilio Jiménez-Piqué, Braham Prakash, Naureen Ghafoor |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, Universitat Politècnica de Catalunya. CIEFMA - Centre d'Integritat Estructural, Fiabilitat i Micromecànica dels Materials, Universitat Politècnica de Catalunya. CIEFMA - Centre d'Integritat Estructural, Micromecànica i Fiabilitat dels Materials |
Rok vydání: | 2016 |
Předmět: |
Materials science
Diffusion barrier Oxide 02 engineering and technology Zr-Si-N coating High temperature wear test Enginyeria dels materials [Àrees temàtiques de la UPC] 01 natural sciences chemistry.chemical_compound 0103 physical sciences Materials Chemistry Composite material 010302 applied physics Nanocomposite Drop (liquid) Metallurgy Tribooxidation Nanostructured materials Surfaces and Interfaces General Chemistry Tribology 021001 nanoscience & nanotechnology Condensed Matter Physics Microstructure Surfaces Coatings and Films Stress field Contact mechanics chemistry TEM Materials nanoestructurats 0210 nano-technology |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya instname |
ISSN: | 0257-8972 |
DOI: | 10.1016/j.surfcoat.2016.07.042 |
Popis: | Varying the Si-content in Zr-Si-N coatings from 0.2 to 6.3 at.% causes microstructural changes from columnar to nanocomposite structure and a hardness drop from 37 to 26 GPa. The softer nanocomposite also displays lower fracture resistance. The tribological response of these coatings is investigated under different contact conditions, both at room and elevated temperatures. At room temperature tribooxidation is found to be the dominant wear mechanism, where the nanocomposite coatings display the lowest wear rate of 0.64 × 10 − 5 mm 3 /Nm, by forming an oxide diffusion barrier layer consisting of Zr, W, and Si. A transition in the dominant wear mechanism from tribooxidation to microploughing is observed upon increasing the test temperature and contact stress. Here, all coatings exhibit significantly higher coefficient of friction of 1.4 and the hardest coatings with columnar structure display the lowest wear rate of 10.5 × 10 − 5 mm 3 /Nm. In a microscopic wear test under the influence of contact-induced dominant elastic stress field, the coatings display wedge formation and pileup due to accumulation of the dislocation-induced plastic deformation. In these tests, the nanocomposite coatings display the lowest wear rate of 0.56 × 10 − 10 mm 3 /Nm, by constraining the dislocation motion. |
Databáze: | OpenAIRE |
Externí odkaz: |