A random dynamical systems perspective on stochastic resonance

Autor: Jeroen S. W. Lamb, Anna Maria Cherubini, Yuzuru Sato, Martin Rasmussen
Přispěvatelé: Cherubini, Anna Maria, Lamb, Jeroen, Rasmussen, Martin, Sato, Yuzuru, Engineering & Physical Science Research Council (EPSRC), Commission of the European Communities
Rok vydání: 2017
Předmět:
random attractors
RANDOM PERIODIC-SOLUTIONS
General Mathematics
Mathematics
Applied

General Physics and Astronomy
Duffing equation
Dynamical Systems (math.DS)
37H10
37H99
60H10

01 natural sciences
Measure (mathematics)
Markov measures
0102 Applied Mathematics
Attractor
FOS: Mathematics
Point (geometry)
stochastic resonance
Statistical physics
Mathematics - Dynamical Systems
0101 mathematics
Mathematical Physics
Mathematics
ATTRACTORS
Science & Technology
Forcing (recursion theory)
Physics
Applied Mathematics
010102 general mathematics
Perspective (graphical)
nonautonomous random dynamical systems
stochastic resonance
Markov measures
random attractors

Statistical and Nonlinear Physics
Stochastic resonance (sensory neurobiology)
Physics
Mathematical

010101 applied mathematics
ORDINARY DIFFERENTIAL-EQUATIONS
Ordinary differential equation
Physical Sciences
nonautonomous random dynamical systems
Zdroj: Nonlinearity. 30:2835-2853
ISSN: 1361-6544
0951-7715
DOI: 10.1088/1361-6544/aa72bd
Popis: We study stochastic resonance in an over-damped approximation of the stochastic Duffing oscillator from a random dynamical systems point of view. We analyse this problem in the general framework of random dynamical systems with a nonautonomous forcing. We prove the existence of a unique global attracting random periodic orbit and a stationary periodic measure. We use the stationary periodic measure to define an indicator for the stochastic resonance.
Databáze: OpenAIRE