A Survey on Generation of Graphic Design Models using Stable Diffusion Models

Autor: Deepak N R, Shaik Jannat Al Firdaus, Shayan Shaikh, Syed Tajamul Shah
Jazyk: angličtina
Rok vydání: 2023
Předmět:
DOI: 10.5281/zenodo.7970564
Popis: AI image generation has grown significantly more accessible over the past few months and is expanding into other industries where the creation of assets is involved. AI picture generators may produce breath-taking photorealistic images from challenging challenges, albeit their capabilities are currently fairly limited. Diffusion models can take in some user input, and some noise, and create content similar to what it’s been trained on. In this case, these models were trained on images, meaning you can pass in a prompt, and have the model produce an image related to that prompt. Fundamentally, generation models that work on the diffusion method can generate images by first randomizing the training data by adding Gaussian noise and then recovering the data by reversing the noise process. The diffusion probabilistic model, sometimes known as the "diffusion model," is a parameterized Markov chain trained using various assumptions to generate images that, after a predetermined amount of time, match the data. Using this technology and resources, we infer to create our model that will make use of all these prompts.
{"references":["1.\tChoi, J., Lee, J., Shin, C., Kim, S., Kim, H., & Yoon, S. (2022). Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11472-11481).)","2.\tAndreoletti, D., Troia, S., Musumeci, F., Giordano, S., Maier, G., & Tornatore, M. (2019, April). Network traffic prediction based on diffusion convolutional recurrent neural networks. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (pp. 246-251). IEEE.","3.\tWang, Y., Chen, X., & Li, J. (2015, August). A new genetic-based rumor diffusion model for social networks. In 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC) (pp. 1-5). IEEE.","4.\tRatcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural computation, 20(4), 873-922.","5.\tChengjun, Y. U. A. N., & Ji, D. (2019, May). Stochastic asymptotically stability of an information diffusion model with random perturbation in social network. In 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (pp. 1916-1920). IEEE.","6.\tSelikhov, A. (2002, July). mL-CNN: a CNN model for reaction-diffusion processes in m-component systems. In Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications (pp. 98-106). IEEE."]}
Databáze: OpenAIRE