Simplified Voronoi diagrams for motion planning of quadratically-solvable Gough-Stewart platforms
Autor: | Joan Aranda, Federico Thomas, Rubén Vaca |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Institut de Bioenginyeria de Catalunya, Universitat Politècnica de Catalunya. GRINS - Grup de Recerca en Robòtica Intel·ligent i Sistemes, Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI |
Rok vydání: | 2012 |
Předmět: |
Homogeneous coordinates
Voronoi polygons Topology Lloyd's algorithm Pure condition Weighted Voronoi diagram Euclidean distance Computer Science::Robotics Automation Voronoi diagrams Gough-Stewart platform Power diagram Voronoi Polígons de Configuration space Centroidal Voronoi tessellation Voronoi diagram Informàtica::Robòtica [Àrees temàtiques de la UPC] Path planning Mathematics |
Zdroj: | Digital.CSIC. Repositorio Institucional del CSIC instname Latest Advances in Robot Kinematics ISBN: 9789400746190 ARK UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) Recercat. Dipósit de la Recerca de Catalunya |
Popis: | Presentado al 13th International Symposium on Advances in Robot Kinematics (ARK) celebrado en Austria del 24 al 28 de junio de 2012. The obstacles in Configuration Space of quadratically-solvable Gough-Stewart platforms, due to both kinematic singularities and collisions, can be uniformly represented by a Boolean combination of signs of 4×4 determinants involving the homogeneous coordinates of sets of four points. This Boolean combination induces a measure of distance to obstacles in Configuration Space from which a simplified Voronoi diagram can be derived. Contrary to what happens with standard Voronoi diagrams, this diagram is no longer a strong deformation retract of free space but, as Canny proved in 1987, it is still complete for motion planning. Its main advantage is that it has lower algebraic complexity than standard Voronoi diagrams based on the Euclidean metric. |
Databáze: | OpenAIRE |
Externí odkaz: |