A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology
Autor: | Chiara Piazzola, Raul Tempone, Lorenzo Tamellini |
---|---|
Rok vydání: | 2020 |
Předmět: |
Statistics and Probability
FOS: Computer and information sciences Dynamical systems theory Computer science Context (language use) Bayesian inversion Machine learning computer.software_genre Models Biological Mathematical modelling of infectious disease General Biochemistry Genetics and Molecular Biology Methodology (stat.ME) Modelling and Simulation Dynamical systems Humans Uncertainty quantification Fisher approximation Quantitative Biology - Populations and Evolution Statistics - Methodology Simple (philosophy) Model identifiability Mathematical epidemiology General Immunology and Microbiology business.industry Applied Mathematics Populations and Evolution (q-bio.PE) Uncertainty COVID-19 General Medicine Inverse problem Modeling and Simulation FOS: Biological sciences Curve fitting Identifiability Uncertainty Quantification Artificial intelligence business General Agricultural and Biological Sciences Epidemiologic Methods computer |
Zdroj: | Mathematical Biosciences Mathematical biosciences 332 (2021): 108514. doi:10.1016/j.mbs.2020.108514 info:cnr-pdr/source/autori:C. Piazzola, L. Tamellini, and R. Tempone/titolo:A note on tools for prediction under uncertainty and identifiability of SIR-like dynamical systems for epidemiology/doi:10.1016%2Fj.mbs.2020.108514/rivista:Mathematical biosciences/anno:2021/pagina_da:108514/pagina_a:/intervallo_pagine:108514/volume:332 |
ISSN: | 1879-3134 |
Popis: | We provide an overview of the methods that can be used for prediction under uncertainty and data fitting of dynamical systems, and of the fundamental challenges that arise in this context. The focus is on SIR-like models, that are being commonly used when attempting to predict the trend of the COVID-19 pandemic. In particular, we raise a warning flag about identifiability of the parameters of SIR-like models; often, it might be hard to infer the correct values of the parameters from data, even for very simple models, making it non-trivial to use these models for meaningful predictions. Most of the points that we touch upon are actually generally valid for inverse problems in more general setups. |
Databáze: | OpenAIRE |
Externí odkaz: |