Titanium Microbead-Based Porous Implants: Bead Size Controls Cell Response and Host Integration

Autor: Nihal Engin Vrana, Philippe Schultz, Agnès Dupret-Bories, Philippe Lavalle, Christian Debry, Dominique Vautier
Přispěvatelé: Biomatériaux et Bioingénierie (BB), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service d'ORL et chirurgie cervico-faciale, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Vrana, Nihal Engin
Rok vydání: 2013
Předmět:
MESH: Rabbits
Pharmaceutical Science
trachea
Infusions
Subcutaneous

Mice
Cell Movement
MESH: Collagen
MESH: Animals
MESH: Human Umbilical Vein Endothelial Cells
MESH: Cell Movement
Prostheses and Implants
Microspheres
in vivo
MESH: Infusions
Subcutaneous

MESH: Titanium
visual_art
visual_art.visual_art_medium
Collagen
Rabbits
Porosity
Titanium
Cell type
porous implants
Materials science
MESH: Rats
MESH: Prostheses and Implants
MESH: Microspheres
Biomedical Engineering
chemistry.chemical_element
Bead
MESH: Coculture Techniques
Biomaterials
MESH: Porosity
In vivo
MESH: Cell Proliferation
Human Umbilical Vein Endothelial Cells
Animals
Humans
titanium
MESH: Particle Size
Particle Size
[SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials
MESH: Mice
Cell Proliferation
MESH: Humans
Cell growth
Microbead (research)
Coculture Techniques
Rats
[SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials
chemistry
NIH 3T3 Cells
host integration
Implant
Particle size
MESH: NIH 3T3 Cells
Biomedical engineering
Zdroj: Adv Healthc Mater
Adv Healthc Mater, 2014, 3 (1), pp.79-87. ⟨10.1002/adhm.201200369⟩
ISSN: 2192-2640
DOI: 10.1002/adhm.201200369
Popis: International audience; Openly porous structures in implants are desirable for better integration with the host tissue. Sintered microbead-based titanium implants for oto-rhinolaryngology applications, which create an environment where the cells can migrate in the areas between the microbeads, are developed. This structure promotes fibrovascular tissue formation within the implant in vivo. In this study, it is determine to what extent these events can be controlled by changing the physical environment of the implants both in vitro and in vivo. By cell tracking, it is observed that the size of the beads and the distance between the neighboring beads significantly affect the ability of cells to develop cell-to-cell contacts and to bridge the pores. Live cell staining shows that as the bead size gets smaller, the probability to observe cells that fill the porous areas is higher. This also affects the initial attachment and distribution of the cells and collagen secretion by fibroblasts. Obtaining a fast coverage of the system also enables co-culture systems where, the number and the distribution of the second cell type are boosted by the presence of the first. This concept is utilized to increase the attachment of vascular endothelial cells by an initial layer of fibroblasts. By decreasing the bead diameter, the overall colonization of the implant can be significantly increased in vivo. The effect of bead size has a similar pattern both in rats and rabbits, with faster colonization of smaller bead-based structures. Using smaller beads would improve clinical outcomes as faster integration facilitates the attainment of functionality by the implant.
Databáze: OpenAIRE