Titanium Microbead-Based Porous Implants: Bead Size Controls Cell Response and Host Integration
Autor: | Nihal Engin Vrana, Philippe Schultz, Agnès Dupret-Bories, Philippe Lavalle, Christian Debry, Dominique Vautier |
---|---|
Přispěvatelé: | Biomatériaux et Bioingénierie (BB), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service d'ORL et chirurgie cervico-faciale, CHU Strasbourg-Hôpital de Hautepierre [Strasbourg], Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Vrana, Nihal Engin |
Rok vydání: | 2013 |
Předmět: |
MESH: Rabbits
Pharmaceutical Science trachea Infusions Subcutaneous Mice Cell Movement MESH: Collagen MESH: Animals MESH: Human Umbilical Vein Endothelial Cells MESH: Cell Movement Prostheses and Implants Microspheres in vivo MESH: Infusions Subcutaneous MESH: Titanium visual_art visual_art.visual_art_medium Collagen Rabbits Porosity Titanium Cell type porous implants Materials science MESH: Rats MESH: Prostheses and Implants MESH: Microspheres Biomedical Engineering chemistry.chemical_element Bead MESH: Coculture Techniques Biomaterials MESH: Porosity In vivo MESH: Cell Proliferation Human Umbilical Vein Endothelial Cells Animals Humans titanium MESH: Particle Size Particle Size [SDV.IB.BIO]Life Sciences [q-bio]/Bioengineering/Biomaterials MESH: Mice Cell Proliferation MESH: Humans Cell growth Microbead (research) Coculture Techniques Rats [SDV.IB.BIO] Life Sciences [q-bio]/Bioengineering/Biomaterials chemistry NIH 3T3 Cells host integration Implant Particle size MESH: NIH 3T3 Cells Biomedical engineering |
Zdroj: | Adv Healthc Mater Adv Healthc Mater, 2014, 3 (1), pp.79-87. ⟨10.1002/adhm.201200369⟩ |
ISSN: | 2192-2640 |
DOI: | 10.1002/adhm.201200369 |
Popis: | International audience; Openly porous structures in implants are desirable for better integration with the host tissue. Sintered microbead-based titanium implants for oto-rhinolaryngology applications, which create an environment where the cells can migrate in the areas between the microbeads, are developed. This structure promotes fibrovascular tissue formation within the implant in vivo. In this study, it is determine to what extent these events can be controlled by changing the physical environment of the implants both in vitro and in vivo. By cell tracking, it is observed that the size of the beads and the distance between the neighboring beads significantly affect the ability of cells to develop cell-to-cell contacts and to bridge the pores. Live cell staining shows that as the bead size gets smaller, the probability to observe cells that fill the porous areas is higher. This also affects the initial attachment and distribution of the cells and collagen secretion by fibroblasts. Obtaining a fast coverage of the system also enables co-culture systems where, the number and the distribution of the second cell type are boosted by the presence of the first. This concept is utilized to increase the attachment of vascular endothelial cells by an initial layer of fibroblasts. By decreasing the bead diameter, the overall colonization of the implant can be significantly increased in vivo. The effect of bead size has a similar pattern both in rats and rabbits, with faster colonization of smaller bead-based structures. Using smaller beads would improve clinical outcomes as faster integration facilitates the attainment of functionality by the implant. |
Databáze: | OpenAIRE |
Externí odkaz: |