Colour and multispectral imaging for wound healing evaluation in the context of a comparative preclinical study

Autor: Franck Marzani, Yves Lucas, Romuald Jolivot, Dorra Nouri, Sylvie Treuillet
Přispěvatelé: Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique ( PRISME ), Université d'Orléans ( UO ) -Ecole Nationale Supérieure d'Ingénieurs de Bourges ( ENSI Bourges ), Laboratoire Electronique, Informatique et Image ( Le2i ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Pluridisciplinaire de Recherche en Ingénierie des Systèmes, Mécanique et Energétique (PRISME), Ecole Nationale Supérieure d'Ingénieurs de Bourges (ENSI Bourges)-Université d'Orléans (UO), Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM), Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies, HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Jazyk: angličtina
Rok vydání: 2013
Předmět:
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing
active contour
Computer science
Multispectral image
KNN classification
wound assessment
02 engineering and technology
[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing
Machine learning
computer.software_genre
030218 nuclear medicine & medical imaging
03 medical and health sciences
Wound assessment
Wound care
0302 clinical medicine
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
0202 electrical engineering
electronic engineering
information engineering

medicine
multispectral imaging
Healing wounds
Active contour model
business.industry
Granulation tissue
Image segmentation
SVM classification
3. Good health
medicine.anatomical_structure
020201 artificial intelligence & image processing
Artificial intelligence
business
Wound healing
computer
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Zdroj: Proc. SPIE 8669, Medical Imaging 2013: Image Processing
Medical Imaging 2013: Image Processing
Medical Imaging 2013: Image Processing, Feb 2013, ake Buena Vista (Orlando Area), Florida, United States. pp.866923, 2013, 〈10.1117/12.2003943〉
Medical Imaging 2013: Image Processing, Feb 2013, ake Buena Vista (Orlando Area), Florida, United States. pp.866923, ⟨10.1117/12.2003943⟩
Medical Imaging: Image Processing
DOI: 10.1117/12.2003943〉
Popis: International audience; Accurate wound assessment is a critical task for patient care and health cost reduction at hospital but even still worse in the context of clinical studies in laboratory. This task, completely devoted to nurses, still relies on manual and tedious practices. Wound shape is measured with rules, tracing papers or rarely with alginate castings and serum injection. The wound tissues proportion is also estimated by a qualitative visual assessment based on the red-yellow-black code. Further to our preceding works on wound 3D complete assessment using a simple freehanded digital camera, we explore here the adaptation of this tool to wounds artificially created for experimentation purposes. It results that tissue uniformity and flatness leads to a simplified approach but requires multispectral imaging for enhanced wound delineation. We demonstrate that, in this context, a simple active contour method can successfully replace more complex tools such as SVM supervised classification, as no training step is required and that one shot is enough to deal with perspective projection errors. Moreover, involving all the spectral response of the tissue and not only RGB components provides a higher discrimination for separating healed epithelial tissue from granulation tissue. This research work is part of a comparative preclinical study on healing wounds. It aims to compare the efficiency of specific medical honeys with classical pharmaceuticals for wound care. Results revealed that medical honey competes with more expensive pharmaceuticals.
Databáze: OpenAIRE