Critical assessment of protein intrinsic disorder prediction

Autor: Necci, Marco, Piovesan, Damiano, Hoque Md, Tamjidul, Walsh, Ian, Iqbal, Sumaiya, Vendruscolo, Michele, Sormanni, Pietro, Wang, Chen, Raimondi, Daniele, Sharma, Ronesh, Zhou, Yaoqi, Litfin, Thomas, Galzitskaya Oxana, Valerianovna, Lobanov Michail, Yu, Vranken, Wim, Wallner, Björn, Mirabello, Claudio, Malhis, Nawar, Dosztányi, Zsuzsanna, Erdős, Gábor, Mészáros, Bálint, Gao, Jianzhao, Wang, Kui, Hu, Gang, Wu, Zhonghua, Sharma, Alok, Hanson, Jack, Paliwal, Kuldip, Callebaut, Isabelle, Bitard-Feildel, Tristan, Orlando, Gabriele, Peng, Zhenling, Xu, Jinbo, Wang, Sheng, Jones David, T., Cozzetto, Domenico, Meng, Fanchi, Yan, Jing, Gsponer, Jörg, Cheng, Jianlin, Wu, Tianqi, Kurgan, Lukasz, Promponas Vasilis, J., Tamana, Stella, Marino-Buslje, Cristina, Martínez-Pérez, Elizabeth, Chasapi, Anastasia, Ouzounis, Christos, Dunker A., Keith, Kajava Andrey, V., Leclercq Jeremy, Y., Aykac-Fas, Burcu, Lambrughi, Matteo, Maiani, Emiliano, Papaleo, Elena, Chemes Lucia, Beatriz, Álvarez, Lucía, González-Foutel Nicolás, S., Iglesias, Valentin, Pujols, Jordi, Ventura, Salvador, Palopoli, Nicolás, Benítez Guillermo, Ignacio, Parisi, Gustavo, Bassot, Claudio, Elofsson, Arne, Govindarajan, Sudha, Lamb, John, Salvatore, Marco, Hatos, András, Monzon Alexander, Miguel, Bevilacqua, Martina, Mičetić, Ivan, Minervini, Giovanni, Paladin, Lisanna, Quaglia, Federica, Leonardi, Emanuela, Davey, Norman, Horvath, Tamas, Kovacs Orsolya, Panna, Murvai, Nikoletta, Pancsa, Rita, Schad, Eva, Szabo, Beata, Tantos, Agnes, Macedo-Ribeiro, Sandra, Manso Jose, Antonio, Pereira Pedro José, Barbosa, Davidović, Radoslav, Veljkovic, Nevena, Hajdu-Soltész, Borbála, Pajkos, Mátyás, Szaniszló, Tamás, Guharoy, Mainak, Lazar, Tamas, Macossay-Castillo, Mauricio, Tompa, Peter, Tosatto Silvio C., E., Caid, Predictors, DisProt, Curators
Přispěvatelé: Università degli Studi di Padova = University of Padua (Unipd), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Necci, Marco [0000-0001-9377-482X], Piovesan, Damiano [0000-0001-8210-2390], Tosatto, Silvio C. E. [0000-0003-4525-7793], Apollo - University of Cambridge Repository, Informatics and Applied Informatics, Chemistry, Basic (bio-) Medical Sciences, Department of Bio-engineering Sciences, Faculty of Sciences and Bioengineering Sciences, Structural Biology Brussels, Tosatto, Silvio CE [0000-0003-4525-7793], ANR-17-CE12-0016,FUNBRCA2,Caractérisation d'un nouveau site de liaison à l'ADN dans la protéine BRCA2(2017), Universita degli Studi di Padova, CAID Predictors, DisProt Curators
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Protein Folding
Protein Conformation
Computer science
631/45/612
analysis
[SDV]Life Sciences [q-bio]
purl.org/becyt/ford/1.7 [https]
MESH: Amino Acid Sequence
Biochemistry
purl.org/becyt/ford/1 [https]
Protein structure
MESH: Protein Conformation
631/114/2398
Databases
Protein

Biological sciences
ComputingMilieux_MISCELLANEOUS
MESH: Intrinsically Disordered Proteins
0303 health sciences
030302 biochemistry & molecular biology
disorder
Critical assessment
Protein folding
Protein Binding
Biotechnology
MESH: Computational Biology
MESH: Databases
Protein

disorder prediction
MESH: Protein Folding
Computational biology
Intrinsically disordered proteins
Orders of magnitude (entropy)
03 medical and health sciences
MESH: Software
Computational platforms and environments
631/114/2411
Machine learning
Molecule
MESH: Protein Binding
[INFO]Computer Science [cs]
Amino Acid Sequence
Molecular Biology
030304 developmental biology
business.industry
Deep learning
Computational Biology
Proteins
Cell Biology
631/114/1305
Intrinsically Disordered Proteins
CAID
631/114/794
Protein structure predictions
Artificial intelligence
business
Software
Zdroj: Nature Methods
Nature Methods, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
Nature Methods, Nature Publishing Group, 2021, ⟨10.1038/s41592-021-01117-3⟩
CONICET Digital (CONICET)
Consejo Nacional de Investigaciones Científicas y Técnicas
instacron:CONICET
Nature Methods, 2021, ⟨10.1038/s41592-021-01117-3⟩
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Nature Methods, Nature Publishing Group, 2021, 18 (5), pp.472-481. ⟨10.1038/s41592-021-01117-3⟩
ISSN: 1548-7091
1548-7105
Popis: Intrinsically disordered proteins, defying the traditional protein structure–function paradigm, are a challenge to study experimentally. Because a large part of our knowledge rests on computational predictions, it is crucial that their accuracy is high. The Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment was established as a community-based blind test to determine the state of the art in prediction of intrinsically disordered regions and the subset of residues involved in binding. A total of 43 methods were evaluated on a dataset of 646 proteins from DisProt. The best methods use deep learning techniques and notably outperform physicochemical methods. The top disorder predictor has Fmax = 0.483 on the full dataset and Fmax = 0.792 following filtering out of bona fide structured regions. Disordered binding regions remain hard to predict, with Fmax = 0.231. Interestingly, computing times among methods can vary by up to four orders of magnitude.
Results are presented from the first Critical Assessment of protein Intrinsic Disorder prediction (CAID) experiment, a community-based blind test to determine the state of the art in predicting intrinsically disordered regions in proteins.
Databáze: OpenAIRE