A tractable framework for analyzing a class of nonstationary Markov models
Autor: | Lilia Maliar, Serguei Maliar, John B. Taylor, Inna Tsener |
---|---|
Rok vydání: | 2020 |
Předmět: |
trends
regime switches Economics and Econometrics jel:C63 jel:C61 jel:C68 semi-Markov models technological progress seasonal adjustments 0502 economics and business ddc:330 parameter shift stochastic volatility 050207 economics E52 extended path E31 050205 econometrics parameter drift Turnpike theorem anticipated shock nonstationary models time-varying parameters 05 social sciences jel:E52 jel:E31 C61 Fair and Taylor method C63 time-inhomogeneous models C68 unbalanced growth |
Zdroj: | Quantitative Economics. 11:1289-1323 |
ISSN: | 1759-7323 |
DOI: | 10.3982/qe1360 |
Popis: | We study a class of infinite-horizon nonlinear dynamic economic models in which preferences, technology and laws of motion for exogenous variables can change over time either deterministically or stochastically, according to a Markov process with time-varying transition probabilities, or both. The studied models are nonstationary in the sense that the decision and value functions are time-dependent, and they cannot be generally solved by conventional solution methods. We introduce a quantitative framework, called extended function path (EFP), for calibrating, solving, simulating and estimating such models. We apply EFP to analyze a collection of challenging applications that do not admit stationary Markov equilibria, including growth models with anticipated parameters shifts and drifts, unbalanced growth under capital augmenting technological progress, anticipated regime switches, deterministically time-varying volatility and seasonal fluctuations. Also, we show an example of estimation and calibration of parameters in an unbalanced growth model using data on the U.S. economy. Examples of MATLAB code are provided. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |