Understanding the Impact of Trampling on Rodent Bones

Autor: Yolanda Fernández-Jalvo, Lucía Rueda, Fernando Julian Fernández, Sara García-Morato, María Dolores Marin-Monfort, Claudia Ines Montalvo, Rodrigo Tomassini, Michael Chazan, Liora K. Horwitz, Peter Andrews
Přispěvatelé: Ministerio de Ciencia e Innovación (España), Consejo Superior de Investigaciones Científicas (España), Social Sciences and Humanities Research Council of Canada, Université de Rennes 1, CSIC - Museo Nacional de Ciencias Naturales (MNCN), Universidad Complutense de Madrid, Banco Santander, Ministerio de Economía y Competitividad (España), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Université de Rennes 1 - UFR Sciences de la vie et de l'environnement (UR1 SVE), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Universidad de Buenos Aires [Buenos Aires] (UBA), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Universitat de València (UV), Universidad Nacional del Sur [Argentina] (UNS), Universidad Nacional de la Pampa, Partenaires INRAE, University of the Witwatersrand [Johannesburg] (WITS), University of Toronto, The Hebrew University of Jerusalem (HUJ), The Natural History Museum [London] (NHM), This project was funded by a Leakey Foundation grant to F.-J.Y. and the project CGL2016-79334-P of the Spanish National Program funded by the Ministry of Scientific Research and Innovation and the Spanish Council of Scientific Research (COOPB20287). Funding for field work at Wonderwerk Cave is provided by a grant from the Canadian Social Sciences and Humanities Research Council (SSHRC) to C.M. The Université de Rennes 1 (France) and the Museo Nacional de Ciencias Naturales (CSIC, Spain) provided the Convention de Stage n. 46360 to R.L. to do this work as practical stage of the Master M2 mention Biologie-agro-santé spécialité préhistoire, paléontologie et paléoenvironnememt in 2015. G.-M.S. has a pre-doctoral grant funded by the Universidad Complutense de Madrid (UCM) and Banco Santander (CT42/18-CT43/18), Université de Rennes (UR), Université de Rennes - UFR Sciences de la vie et de l'environnement (UR SVE)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Digital.CSIC. Repositorio Institucional del CSIC
instname
Quaternary
Quaternary, MDPI, 2022, 5 (1), pp.11. ⟨10.3390/quat5010011⟩
Quaternary, 2022, 5 (1), pp.11. ⟨10.3390/quat5010011⟩
E-Prints Complutense. Archivo Institucional de la UCM
Volume 5
Issue 1
Pages: 11
ISSN: 2571-550X
DOI: 10.3390/quat5010011⟩
Popis: Experiments based on the premise of uniformitarism are an effective tool to establish patterns of taphonomic processes acting either before, or after, burial. One process that has been extensively investigated experimentally is the impact of trampling to large mammal bones. Since trampling marks caused by sedimentary friction strongly mimic cut marks made by humans using stone tools during butchery, distinguishing the origin of such modifications is especially relevant to the study of human evolution. In contrast, damage resulting from trampling on small mammal fossil bones has received less attention, despite the fact that it may solve interesting problems relating to site formation processes. While it has been observed that the impact of compression depends on the type of substrate and dryness of the skeletal elements, the fragility of small mammal bones may imply that they will break as a response to compression. Here, we have undertaken a controlled experiment using material resistance compression equipment to simulate a preliminary experiment, previously devised by one of us, on human trampling of owl pellets. Our results demonstrate that different patterns of breakage can be distinguished under wet and dry conditions in mandibles, skulls and long bones that deform or break in a consistent way. Further, small compact bones almost always remain intact, resisting breakage under compression. The pattern obtained here was applied to a Pleistocene small mammal fossil assemblage from Wonderwerk Cave (South Africa). This collection showed unusually extensive breakage and skeletal element representation that could not be entirely explained by excavation procedures or digestion by the predator. We propose that trampling was a significant factor in small mammal bone destruction at Wonderwerk Cave, partly the product of trampling caused by the raptor that introduced the microfauna into the cave, as well as by hominins and other terrestrial animals that entered the cave and trampled pellets covering the cave floor.
This project was funded by a Leakey Foundation grant to F.-J.Y. and the project CGL2016-79334-P of the Spanish National Program funded by the Ministry of Scientific Research and Innovation and the Spanish Council of Scientific Research (COOPB20287). Funding for field work at Wonderwerk Cave is provided by a grant from the Canadian Social Sciences and Humanities Research Council (SSHRC) to C.M. The Université de Rennes 1 (France) and the Museo Nacional de Ciencias Naturales (CSIC, Spain) provided the Convention de Stage n. 46360 to R.L. to do this work as practical stage of the Master M2 mention Biologie-agro-santé spécialité préhistoire, paléontologie et paléoenvironnememt in 2015. G.-M.S. has a pre-doctoral grant funded by the Universidad Complutense de Madrid (UCM) and Banco Santander (CT42/18-CT43/18).
Databáze: OpenAIRE