Optimum Design Of An Absorption Heat Pump Integrated With A Kraft Industry Using Genetic Algorithm
Autor: | B. Jabbari, N. Tahouni, M. H. Panjeshahi |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2012 |
Předmět: | |
DOI: | 10.5281/zenodo.1081867 |
Popis: | In this study the integration of an absorption heat pump (AHP) with the concentration section of an industrial pulp and paper process is investigated using pinch technology. The optimum design of the proposed water-lithium bromide AHP is then achieved by minimizing the total annual cost. A comprehensive optimization is carried out by relaxation of all stream pressure drops as well as heat exchanger areas involving in AHP structure. It is shown that by applying genetic algorithm optimizer, the total annual cost of the proposed AHP is decreased by 18% compared to one resulted from simulation. {"references":["L. Savulescu, B. Poulin, A. Hammache, S. Bedard, S. Gennaoui, \"Water\nand Energy Savings at a Kraft Paperboard mill using Process\nIntegration\", P&PC 106, 29-31 (2005).","B. Bakhtiari, E. Mateos, R. Legres, J. Paris, \"Integration of an\nAbsorption Heat Pump in the Kraft Pulping Process\": Feasibility study,\nRepr. PAPTAC Ann. Meet., A, 235-239, Montreal (2007).","A. Costa, V. Neuhann, J. Vaillancourt, \"Applications of Absorption Heat\nPumps in the Pulp and Paper industry for Increased Efficiency and\nReduction of GHG Emissions\", 191-195, Montreal (2004).","A. Costa, B. Bakhtiari, S. Schuster, J. paris, \"Integration of Absorption\nHeat Pumps in a Kraft Pulp Process for Enhanced Energy Efficiency\",\nEnergy 34, 254-260 (2009).","H. Jarlos, \"Thermodynamic Modeling of Absorption Heat Pumps\",\nMaster-s Thesis, Department of Energy and Environment, Chalmers\nUniversity, 2010.","S. Kalogirou, G. Florides, S. Tassou, L. Wrobel, \"Design and\nConstruction of A Lithium Bromide Water Absorption Refrigerator\",\nCLIMA 2000/Napoli 2001 World Congress - Napoli (I), 15-18\nSeptember 2001","R. Smith, \"Chemical Process Design and Integration\", Wiley: New\nYork, 2005.","A. Costa, E. Queiroz, \"Design Optimization of Shell and Tube Heat\nExchangers\", Applied Thermal Engineering 28 (2008) 1798-1805.","M. Serna, A Jime'nez, \"An efficient method for the design of shell and\ntube heat exchangers\". Heat Transfer Engineering 2004; 25:5-16.\n[10] R. Selbas,O¨ . Kizilkan, M. Reppich, \"A new design approach for shell\nand tube heat exchanger using genetic algorithms from economic point\nof view\", Chemical Engineering and Processing 45 (2006) 268275.\n[11] B. Allen, L. Gosselin, \"Optimal Geometry and Flow Arrangement for\nMinimizing the Cost of Shell and Tube Condenser\", International\nJournal of Energy Research 32, 958-969 (2008).\n[12] J. M. Ponce, M. Serna, V. Rico, A. Jime'nez, \"Optimal design of shell\nand tube heat exchangers using genetic algorithm\", 16th European\nSymposium on Computer Aided Process Engineering and 9th\n/International Symposium on Process Systems Engineering, 2006.\n[13] Ph. Wildi-Tremblay, L. Gosselin, \"Minimizing shell and tube heat\nexchanger cost with genetic algorithm and considering maintenance\",\nInternational Journal of Energy Research 31, 867-885 (2007).\n[14] TW. Botsch, K. Stephan, \"Modelling and simulation of the dynamic\nbehavior of shell-and-tube condenser\", International Journal of Heat and\nMass Transfer 1997; 40:4137-4149\n[15] JL. Alcock, DR. Webb, \"An experimental investigation of the dynamic\nbehavior of a shell and tube condenser\", International Journal of Heat\nand Mass Transfer 1997; 40: 4129-4135.\n[16] G.A. Smook, \"Handbook for Pulp Paper Technologists\", Angus Wild\nPublication Inc., Vancouver (2002).\n[17] M. Marinova, E. Mateos-Espejel, B. Bakhtiari, J. Paris, \"A New\nMethodology for the Implementation of Trigeneration in Industry\":\nApplication to the Kraft Process, 333-351, (2007).\n[18] B. Jabbari, N. Tahouni, M. H. Panjeshahi, \"Improving Energy\nEfficiency in Pulp and Paper industry, Using a CCHP System\",\nProceeding of the 7th International Chemical Engineering Congress &\nExhibition, (IChEC), Kish Island, Iran, 21-24 Nov, 2011.\n[19] M. R. Jafari Nasr, G. T. Polley, \"An Algorithm for Cost Comparison of\nOptimized Shell-and-Tube Heat Exchangers with Tube Inserts and Plain\nTubes\", Chem. Eng. Technol. 23 (2000) 3.\n[20] R. S. Hall, J. Matley, and K. J. McNaughton, \"Current Costs of Process\nEquipment\", Chem. Eng. 89(7), 80-116 (Apr. 5, 1982).\n[21] RK. Sinnot, Coulson and Richardson-s Chemical Engineering.\nButterworth-Heinemann: Stoneham, 1996.\n[22] RK Shah, DP. Sekulic, \"Fundamentals of Heat Exchanger Design\",\nWiley: New Jersey, 2003\n[23] V.K. Patel, R.V. Rao, \"Design optimization of shell-and-tube heat\nexchanger using particle swarm optimization technique\", Applied\nThermal Engineering, Vol. 30, pp. 1417-1425, (2010).\n[24] D.Q. Kern, Process Heat transfer, McGraw-Hill, New York (1950), p.\n161-167\n[25] J. C. Chen, \"Correlation for boiling heat transfer to saturated fluids in\nconvective flow\", Ind Eng Chem Proc Des Dev, 5: 322-329, 1996.\n[26] D. Chisholm, \"A theoretical basis for the Lockhart-Martinelli correlation\nfor two phase flow\", Int J Heat Mass Trans, 10: 1767-1778, 1967.\n[27] IDR. Grant, D. Chisholm, \"Two-phase flow on the shell side of a\nsegmentally baffled shell and tube heat exchanger\", International Journal\nof Heat Transfer 1979; 101:38-42."]} |
Databáze: | OpenAIRE |
Externí odkaz: |