SPN completable graphs
Autor: | Mirjam Dür, Abraham Berman, M. Rajesh Kannan, Naomi Shaked-Monderer |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Numerical Analysis Algebra and Number Theory 0211 other engineering and technologies 021107 urban & regional planning 010103 numerical & computational mathematics 02 engineering and technology Positive-definite matrix 01 natural sciences Combinatorics Matrix (mathematics) Discrete Mathematics and Combinatorics Geometry and Topology 0101 mathematics Mathematics |
Zdroj: | Linear Algebra and its Applications. 498:58-73 |
ISSN: | 0024-3795 |
DOI: | 10.1016/j.laa.2014.10.021 |
Popis: | An SPN matrix is a matrix which is the sum of a real positive semidefinite matrix and a symmetric nonnegative one. We solve the SPN completion problem: we show that the SPN completable graphs are the graphs in which every odd cycle induces a complete subgraph. |
Databáze: | OpenAIRE |
Externí odkaz: |