Prevention of guanylyl cyclase–B dephosphorylation rescues achondroplastic dwarfism

Autor: Yun Wen Lin, Brandon M. Wagner, Laurence Legeai-Mallet, Jerid W. Robinson, Lincoln R. Potter, Nabil Kaci, Yi Ching Lee
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: JCI Insight, Vol 6, Iss 9 (2021)
JCI Insight
ISSN: 2379-3708
Popis: Activating mutations in the fibroblast growth factor receptor 3 (FGFR3) or inactivating mutations in guanylyl cyclase B (GC-B), also known as NPR-B or Npr2, cause short-limbed dwarfism. FGFR3 activation causes dephosphorylation and inactivation of GC-B, but the contribution of GC-B dephosphorylation to achondroplasia (ACH) is unknown. GC-B7E/7E mice that express a glutamate-substituted version of GC-B that cannot be inactivated by dephosphorylation were bred with mice expressing FGFR3-G380R, the most common human ACH mutation, to determine if GC-B dephosphorylation is required for ACH. Crossing GC-B7E/7E mice with FGFR3G380R/G380R mice increased naso-anal and long (tibia and femur), but not cranial, bone length twice as much as crossing GC-B7E/7E mice with FGFR3WT/WT mice from 4 to 16 weeks of age. Consistent with increased GC-B activity rescuing ACH, long bones from the GC-B7E/7E/FGFR3G380R/G380R mice were not shorter than those from GC-BWT/WT/FGFR3WT/WT mice. At two weeks of age, male but not female FGFR3G380R/G380R mice had shorter long bones and smaller growth plate hypertrophic zones, whereas female but not male GC-B7E/7E mice had longer bones and larger hypertrophic zones. In two-week old males, crossing FGFR3G380R/G380R mice with GC-B7E/7E mice increased long bone length and hypertrophic zone area to levels observed in mice expressing wild type versions of both receptors. We conclude that preventing GC-B dephosphorylation rescues reduced axial and appendicular skeleton growth in a mouse model of achondroplasia.
Databáze: OpenAIRE