Fundamental solution of the Laplacian on flat tori and boundary value problems for the planar Poisson equation in rectangles

Autor: Malik Mamode
Přispěvatelé: Physique et Ingénierie Mathématique pour l'Énergie, l'environnemeNt et le bâtimenT (PIMENT), Université de La Réunion (UR)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Boundary Value Problems
Boundary Value Problems, SpringerOpen, 2014, 2014 (1), pp.221. ⟨10.1186/s13661-014-0221-4⟩
ISSN: 1687-2762
1687-2770
DOI: 10.1186/s13661-014-0221-4⟩
Popis: International audience; The fundamental solution of the Laplacian on flat tori is obtained using Eisenstein's approach to elliptic functions via infinite series over lattices in the complex plane. Most boundary value problems stated for the planar Poisson equation in a rectangle for which series-only representations of solution were known, may thus be solved explicitly in closed-form using the method of images. Moreover, the fundamental solution of n-Laplacian on flat tori may also be simply derived by a convolution power.
Databáze: OpenAIRE