Computing Contour Trees for 2D Piecewise Polynomial Functions
Autor: | Girijanandan Nucha, Georges-Pierre Bonneau, Vijay Natarajan, Stefanie Hahmann |
---|---|
Přispěvatelé: | Indian Institute of Science [Bangalore] (IISc Bangalore), Models and Algorithms for Visualization and Rendering (MAVERICK ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), IFCAM and INRIA |
Rok vydání: | 2017 |
Předmět: |
Parallelizable manifold
higher-order Scalar (mathematics) ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION 020207 software engineering 0102 computer and information sciences 02 engineering and technology 01 natural sciences Computer Graphics and Computer-Aided Design contour-tree [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] Reeb graph Monotone polygon 010201 computation theory & mathematics Isosurface Path tracing 0202 electrical engineering electronic engineering information engineering Piecewise Scalar field Algorithm visualization Computer Science & Automation Mathematics ComputingMethodologies_COMPUTERGRAPHICS |
Zdroj: | Computer Graphics Forum Computer Graphics Forum, Wiley, 2017, 36 (3), pp.23-33. ⟨10.1111/cgf.13165⟩ Computer Graphics Forum, 2017, 36 (3), pp.23-33. ⟨10.1111/cgf.13165⟩ |
ISSN: | 2381-3652 0167-7055 1467-8659 |
DOI: | 10.1111/cgf.13165⟩ |
Popis: | International audience; Contour trees are extensively used in scalar field analysis. The contour tree is a data structure that tracks the evolution of levelset topology in a scalar field. Scalar fields are typically available as samples at vertices of a mesh and are linearly interpolatedwithin each cell of the mesh. A more suitable way of representing scalar fields, especially when a smoother function needsto be modeled, is via higher order interpolants. We propose an algorithm to compute the contour tree for such functions. Thealgorithm computes a local structure by connecting critical points using a numerically stable monotone path tracing procedure.Such structures are computed for each cell and are stitched together to obtain the contour tree of the function. The algorithmis scalable to higher degree interpolants whereas previous methods were restricted to quadratic or linear interpolants. Thealgorithm is intrinsically parallelizable and has potential applications to isosurface extraction. |
Databáze: | OpenAIRE |
Externí odkaz: |