Cluster characters II: a multiplication formula

Autor: Yann Palu
Přispěvatelé: Institut de Mathématiques de Jussieu (IMJ), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2011
Předmět:
Zdroj: Proceedings of the London Mathematical Society. 104:57-78
ISSN: 0024-6115
DOI: 10.1112/plms/pdr027
Popis: Let $\mathcal{C}$ be a Hom-finite triangulated 2-Calabi-Yau category with a cluster tilting object. Under some constructibility assumptions on $\mathcal{C}$ which are satisfied for instance by cluster categories, by generalized cluster categories and by stable categories of modules over a preprojective algebra, we prove a multiplication formula for the cluster character associated with any cluster tilting object. This formula generalizes those obtained by Caldero-Keller for representation finite path algebras and by Xiao-Xu for finite-dimensional path algebras. It is analogous to a formula obtained by Geiss-Leclerc-Schr\"oer in the context of preprojective algebras.
Comment: v3: Updated references. Section on Fu--Keller's cluster character. v4: Some expository changes as suggested by the referee. To appear in Proceedings LMS
Databáze: OpenAIRE