Heterotic backgrounds via generalised geometry: moment maps and moduli
Autor: | Daniel Waldram, Charles Strickland-Constable, Anthony Ashmore, David Tennyson |
---|---|
Přispěvatelé: | Science and Technology Facilities Council (STFC) |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
High Energy Physics - Theory
Mathematics - Differential Geometry FLUX Tangent bundle Nuclear and High Energy Physics FOS: Physical sciences Geometry BUNDLES 01 natural sciences Physics Particles & Fields Moduli YANG-MILLS CONNECTIONS High Energy Physics::Theory STRING THEORY Superstrings and Heterotic Strings VACUA Flux compactifications 0103 physical sciences FOS: Mathematics SPACE Differential and Algebraic Geometry lcsh:Nuclear and particle physics. Atomic energy. Radioactivity 010306 general physics 0206 Quantum Physics Mathematics::Symplectic Geometry Moment map COMPACTIFICATIONS Physics Heterotic string theory Science & Technology 0105 Mathematical Physics 010308 nuclear & particles physics hep-th Computer Science::Information Retrieval Superpotential Nuclear & Particles Physics EXISTENCE math.DG High Energy Physics - Theory (hep-th) Differential Geometry (math.DG) Physical Sciences MANIFOLDS 0202 Atomic Molecular Nuclear Particle and Plasma Physics Subbundle lcsh:QC770-798 STROMINGER SYSTEM Geometric invariant theory Hitchin functional |
Zdroj: | Journal of High Energy Physics, Vol 2020, Iss 11, Pp 1-46 (2020) Journal of High Energy Physics |
ISSN: | 1029-8479 |
Popis: | We describe the geometry of generic heterotic backgrounds preserving minimal supersymmetry in four dimensions using the language of generalised geometry. They are characterised by an $SU(3)\times Spin(6+n)$ structure within $O(6,6+n)\times\mathbb{R}^+$ generalised geometry. Supersymmetry of the background is encoded in the existence of an involutive subbundle of the generalised tangent bundle and the vanishing of a moment map for the action of diffeomorphisms and gauge symmetries. We give both the superpotential and the K\"ahler potential for a generic background, showing that the latter defines a natural Hitchin functional for heterotic geometries. Intriguingly, this formulation suggests new connections to geometric invariant theory and an extended notion of stability. Finally we show that the analysis of infinitesimal deformations of these geometric structures naturally reproduces the known cohomologies that count the massless moduli of supersymmetric heterotic backgrounds. Comment: 50 pages; references added |
Databáze: | OpenAIRE |
Externí odkaz: |