Heterotic backgrounds via generalised geometry: moment maps and moduli

Autor: Daniel Waldram, Charles Strickland-Constable, Anthony Ashmore, David Tennyson
Přispěvatelé: Science and Technology Facilities Council (STFC)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
High Energy Physics - Theory
Mathematics - Differential Geometry
FLUX
Tangent bundle
Nuclear and High Energy Physics
FOS: Physical sciences
Geometry
BUNDLES
01 natural sciences
Physics
Particles & Fields

Moduli
YANG-MILLS CONNECTIONS
High Energy Physics::Theory
STRING THEORY
Superstrings and Heterotic Strings
VACUA
Flux compactifications
0103 physical sciences
FOS: Mathematics
SPACE
Differential and Algebraic Geometry
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
010306 general physics
0206 Quantum Physics
Mathematics::Symplectic Geometry
Moment map
COMPACTIFICATIONS
Physics
Heterotic string theory
Science & Technology
0105 Mathematical Physics
010308 nuclear & particles physics
hep-th
Computer Science::Information Retrieval
Superpotential
Nuclear & Particles Physics
EXISTENCE
math.DG
High Energy Physics - Theory (hep-th)
Differential Geometry (math.DG)
Physical Sciences
MANIFOLDS
0202 Atomic
Molecular
Nuclear
Particle and Plasma Physics

Subbundle
lcsh:QC770-798
STROMINGER SYSTEM
Geometric invariant theory
Hitchin functional
Zdroj: Journal of High Energy Physics, Vol 2020, Iss 11, Pp 1-46 (2020)
Journal of High Energy Physics
ISSN: 1029-8479
Popis: We describe the geometry of generic heterotic backgrounds preserving minimal supersymmetry in four dimensions using the language of generalised geometry. They are characterised by an $SU(3)\times Spin(6+n)$ structure within $O(6,6+n)\times\mathbb{R}^+$ generalised geometry. Supersymmetry of the background is encoded in the existence of an involutive subbundle of the generalised tangent bundle and the vanishing of a moment map for the action of diffeomorphisms and gauge symmetries. We give both the superpotential and the K\"ahler potential for a generic background, showing that the latter defines a natural Hitchin functional for heterotic geometries. Intriguingly, this formulation suggests new connections to geometric invariant theory and an extended notion of stability. Finally we show that the analysis of infinitesimal deformations of these geometric structures naturally reproduces the known cohomologies that count the massless moduli of supersymmetric heterotic backgrounds.
Comment: 50 pages; references added
Databáze: OpenAIRE