Circular pentagons and real solutions of Painleve VI equations
Autor: | Andrei Gabrielov, Alexandre Eremenko |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Class (set theory)
Pure mathematics 010308 nuclear & particles physics Mutual position Mathematics - Complex Variables 010102 general mathematics FOS: Physical sciences Statistical and Nonlinear Physics Interval (mathematics) Mathematical Physics (math-ph) Fixed point 01 natural sciences 34M55 30C20 Monodromy 0103 physical sciences FOS: Mathematics 0101 mathematics Complex Variables (math.CV) Linear equation Mathematical Physics Mathematics |
Popis: | We study real solutions of a class of Painleve VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm which permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval x>1 and their mutual position. The monodromy of the associated linear equation and parameters of the Painleve VI equation are easily recovered from the family of pentagons. 55 pages, 24 figures |
Databáze: | OpenAIRE |
Externí odkaz: |