The mean square of the error term in the prime number theorem

Autor: Richard P. Brent, David J. Platt, Tim Trudgian
Rok vydání: 2022
Předmět:
Zdroj: Journal of Number Theory. 238:740-762
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2021.09.016
Popis: We show that, on the Riemann hypothesis, $\limsup_{X\to\infty}I(X)/X^{2} \leq 0.8603$, where $I(X) = \int_X^{2X} (\psi(x)-x)^2\,dx.$ This proves (and improves on) a claim by Pintz from 1982. We also show unconditionally that $\frac{1}{5\,374}\leq I(X)/X^2 $ for sufficiently large $X$, and that the $I(X)/X^{2}$ has no limit as $X\rightarrow\infty$.
Comment: 23 pages
Databáze: OpenAIRE