Parallel computing for multi-objective train rescheduling

Autor: Sai Prashanth Josyula, Johanna Tornquist Krasemann, Lars Lundberg
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: In railway traffic systems, it is essential to achieve a high punctuality to satisfy the goals of the involved stakeholders. Thus, whenever disturbances occur, it is important to effectively reschedule trains while considering the perspectives of various stakeholders. This typically involves solving a multi-objective train rescheduling problem, which is much more complex than its single-objective counterpart. Solving such a problem in real-time for practically relevant problem sizes is computationally challenging. The reason is that the rescheduling solution(s) of interest are dispersed across a large search tree. The tree needs to be navigated fast while pruning off branches leading to undesirable solutions and exploring branches leading to potentially desirable solutions. The use of parallel computing enables such a fast navigation of the tree. This paper presents a heuristic parallel algorithm to solve the multi-objective train rescheduling problem. The parallel algorithm combines a depth-first search with simultaneous breadth-wise tree exploration while searching the tree for solutions. An existing parallel algorithm for single-objective train rescheduling has been redesigned, primarily, by (i) pruning based on multiple metrics, and (ii) maintaining a set of upper bounds. The redesign improved the quality of the obtained rescheduling solutions and showed better speedups for several disturbance scenarios. CCBY open accessFunded by FR8Rail II project 826206
Databáze: OpenAIRE