Chitin and chitosan – structurally-related precursors of dissimilar hard carbons for Na-ion battery

Autor: Cyril Marino, Claire Villevieille, Joanna Conder, Camelia Matei Ghimbeu, Cyril Vaulot
Přispěvatelé: Institut de Science des Matériaux de Mulhouse (IS2M), Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: ACS Applied Energy Materials
ACS Applied Energy Materials, ACS, 2019, 2, pp.4841-4852. ⟨10.1021/acsaem.9b00545⟩
ISSN: 2574-0962
DOI: 10.1021/acsaem.9b00545⟩
Popis: Hard carbons (HCs) prepared from renewable precursors are promising cost-effective electrode-material candidates for the application in Na-ion battery. Usually these materials are derived from cellulose. Here, however, we demonstrate that other polysaccharides, such as chitin and chitosan, can be as well up-and-coming parent materials of HCs. Despite structural similarities, thermal decomposition of these two biopolymers proceeds differently, contributing to the discrepancies in physicochemical properties of resulting HCs. Although chitin- and chitosan-derived HCs have comparable d-spacings and crystallite sizes, solid-state pyrolysis of the former biopolymer leads to micromesoporous material with significant specific surface area, while that of chitosan yields nonporous carbon. Despite that, both materials deliver similar initial specific charge of 280 mAh g–1 (at C/10 rate), and their electrochemical performance starts to diverge only upon longer cycling at higher rate. With time, inorganic contaminants present in chitosan-derived HC presumably delay the diffusion of Na ions to and within the electrode and slow the rate of electrochemical reactions, eventually triggering polarization buildup. Further optimization of the chitosan-derived HC through acid treatment enables unblocking some of the micropores and increasing the carbon content in this material, therefore enhancing its active surface area and suppressing continuous fading of the specific charge.
Databáze: OpenAIRE