Integration of InP and InGaAs on 300 mm Si Wafers Using Chemical Mechanical Planarization
Autor: | Glenn Whitener, PapaRao Satyavolu, Benjamin Petro, Tommaso Orzali, Alexey Vert |
---|---|
Rok vydání: | 2016 |
Předmět: |
010302 applied physics
Materials science Fabrication business.industry Oxide 02 engineering and technology Surface finish 021001 nanoscience & nanotechnology Epitaxy 01 natural sciences Buffer (optical fiber) Electronic Optical and Magnetic Materials chemistry.chemical_compound chemistry Chemical-mechanical planarization 0103 physical sciences MOSFET Optoelectronics Wafer 0210 nano-technology business QC |
Zdroj: | ECS Journal of Solid State Science and Technology. 5:P478-P482 |
ISSN: | 2162-8777 2162-8769 |
Popis: | Integration of III-V high mobility channel materials in complementary metal oxide semiconductors (CMOS) and III-V photonic materials for integrated light sources on Si substrates requires low defect density III-V buffer layers in order to enable epitaxial growth of high crystal quality active layers. For the fabrication of In0.53Ga0.47As n-channel MOSFET on Si, a lattice matched InP buffer layer is one of the most effective approaches when used in combination with the aspect ratio trapping technique, an integration method known for reducing the density of defects formed during relaxation of strain induced by the lattice mismatch between InP and Si. The InP buffer should be planarized in order to improve thickness uniformity and roughness before subsequent deposition of active layers. In this work we discuss the development of InP planarization on 300 mm Si wafers and investigate slurry composition effects on the final oxide loss and condition of the InP surface. To further explore viability of this approach we deposited an epitaxial In0.53Ga0.47As n-MOS channel layer on top of the planarized InP buffer. |
Databáze: | OpenAIRE |
Externí odkaz: |