M-Polynomial and Related Topological Indices of Nanostar Dendrimers
Autor: | Waqas Nazeer, Mobeen Munir, Shazia Rafique, Shin Min Kang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Polynomial
Physics and Astronomy (miscellaneous) General Mathematics 010402 general chemistry Topology 01 natural sciences general Randic index Dendrimer Computer Science (miscellaneous) Molecule degree-based topological indices nanostar dendrimers Topology (chemistry) Mathematics Quantitative Biology::Biomolecules Degree (graph theory) 010405 organic chemistry lcsh:Mathematics M-polynomials lcsh:QA1-939 Zagreb indices symmetric division index 0104 chemical sciences Chemistry (miscellaneous) Macromolecule |
Zdroj: | Symmetry; Volume 8; Issue 9; Pages: 97 Symmetry, Vol 8, Iss 9, p 97 (2016) |
ISSN: | 2073-8994 |
DOI: | 10.3390/sym8090097 |
Popis: | Dendrimers are highly branched organic macromolecules with successive layers of branch units surrounding a central core. The M-polynomial of nanotubes has been vastly investigated as it produces many degree-based topological indices. These indices are invariants of the topology of graphs associated with molecular structure of nanomaterials to correlate certain physicochemical properties like boiling point, stability, strain energy, etc. of chemical compounds. In this paper, we first determine M-polynomials of some nanostar dendrimers and then recover many degree-based topological indices. |
Databáze: | OpenAIRE |
Externí odkaz: |