Local resolution of ideals subordinated to a foliation

Autor: André Belotto da Silva
Rok vydání: 2015
Předmět:
Zdroj: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 110:841-862
ISSN: 1579-1505
1578-7303
Popis: Let $M$ be a complex- or real-analytic manifold, $\theta$ be a singular distribution and $\mathcal{I}$ a coherent ideal sheaf defined on $M$. We prove the existence of a local resolution of singularities of $\mathcal{I}$ that preserves the class of singularities of $\theta$, under the hypothesis that the considered class of singularities is invariant by $\theta$-admissible blowings-up. In particular, if $\theta$ is monomial, we prove the existence of a local resolution of singularities of $\mathcal{I}$ that preserves the monomiality of the singular distribution $\theta$.
Comment: Updated version. See full reviewed version in the Journal
Databáze: OpenAIRE