Local resolution of ideals subordinated to a foliation
Autor: | André Belotto da Silva |
---|---|
Rok vydání: | 2015 |
Předmět: |
Pure mathematics
Monomial Algebra and Number Theory Mathematics::Commutative Algebra Mathematics - Complex Variables Applied Mathematics 010102 general mathematics Resolution of singularities 01 natural sciences Ideal sheaf Foliation Computational Mathematics 0103 physical sciences FOS: Mathematics Singular distribution Gravitational singularity 010307 mathematical physics Geometry and Topology Complex Variables (math.CV) 0101 mathematics Invariant (mathematics) Analysis Resolution (algebra) Mathematics |
Zdroj: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 110:841-862 |
ISSN: | 1579-1505 1578-7303 |
Popis: | Let $M$ be a complex- or real-analytic manifold, $\theta$ be a singular distribution and $\mathcal{I}$ a coherent ideal sheaf defined on $M$. We prove the existence of a local resolution of singularities of $\mathcal{I}$ that preserves the class of singularities of $\theta$, under the hypothesis that the considered class of singularities is invariant by $\theta$-admissible blowings-up. In particular, if $\theta$ is monomial, we prove the existence of a local resolution of singularities of $\mathcal{I}$ that preserves the monomiality of the singular distribution $\theta$. Comment: Updated version. See full reviewed version in the Journal |
Databáze: | OpenAIRE |
Externí odkaz: |