Phosphorylation analysis of 90 kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex

Autor: Eiko Matsumoto, Yoshiaki Fujii-Kuriyama, Shigeyuki Yokoyama, Madoka Nishimoto, Hideo Ogiso, Noriko Kagi, Ryoichi Arai, Mikako Shirouzu, Junsei Mimura
Rok vydání: 2004
Předmět:
Zdroj: Biochemistry. 43(49)
ISSN: 0006-2960
Popis: The arylhydrocarbon receptor (AhR) functions as a ligand-activated transcription factor that regulates the transcription of genes encoding xenobiotic metabolizing enzymes and also mediates most of the toxic effects caused by dioxins and polycyclic aromatic hydrocarbons. The cytosolic AhR complex exists as a transcriptionally cryptic complex, consisting of the 90 kDa heat shock protein (HSP90) and the hepatitis B virus X-associated protein 2 (XAP2). The posttranslational modifications, especially phosphorylation, of the cytosolic AhR-HSP90-XAP2 complex are poorly understood, although the phosphorylation of a transcriptionally active heterodimer of AhR and an AhR nuclear translocator is critically involved in AhR function. To reveal the phosphorylation status involved in AhR function, we used mass spectrometry to determine the site-specific phosphorylation of the steady-state cytosolic AhR complex, prepared from Chinese hamster ovary cells stably expressing mouse AhR. We identified phosphorylations of the HSP90 subunits within the AhR complex at Ser225 and Ser254 of HSP90beta and Ser230 of HSP90alpha. By site-directed mutagenesis, these serine residues were substituted with alanine and glutamic acid to elucidate the role of the HSP90beta serine phosphorylations in the AhR function. Immunoprecipitation assays using COS7 transfectants showed that the replacement of Ser225 and Ser254 by Ala, S225/254A, increased the binding affinity for AhR, as compared with the Glu replacement. In a ligand-induced AhR transcription activity assay using Hepa1 transfectants, the S255/254A mutant exhibited more potent transcription activity than the S225/254E mutant, which had activity similar to that of wild-type HSP90beta. These results suggest that the phosphorylations in the charged linker region of the HSP90 molecule modulate the formation of the functional cytosolic AhR complex.
Databáze: OpenAIRE