Development of SKI-349, a Dual-Targeted Inhibitor of Sphingosine Kinase and Microtubule Polymerization
Autor: | Shailaja Hegde, Jong K. Yun, Robert F. Paulson, Jeremy A. Hengst |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
animal structures
Cell Survival Clinical Biochemistry Sphingosine kinase Pharmaceutical Science Antineoplastic Agents 01 natural sciences Biochemistry Microtubules Article Microtubule polymerization Polymerization chemistry.chemical_compound Structure-Activity Relationship Drug Development Cell Line Tumor Drug Discovery Humans Sphingosine-1-phosphate Enzyme Inhibitors Molecular Biology Cell Proliferation Sphingosine Dose-Response Relationship Drug Molecular Structure 010405 organic chemistry Kinase Organic Chemistry Myeloid leukemia musculoskeletal system 0104 chemical sciences 010404 medicinal & biomolecular chemistry Phosphotransferases (Alcohol Group Acceptor) chemistry Mitotic spindle assembly checkpoint Cancer cell Cancer research Molecular Medicine Drug Screening Assays Antitumor human activities |
Zdroj: | Bioorg Med Chem Lett |
Popis: | Our sphingosine kinase inhibitor (SKI) optimization studies originated with the optimization of the SKI-I chemotype by replacement of the substituted benzyl rings with substituted phenyl rings giving rise to the discovery of SKI-178. We have recently reported that SKI-178 is a dual-targeted inhibitor of both sphingosine kinase isoforms (SphK1/2) and a microtubule disrupting agent (MDA). In mechanism-of-action studies, we have shown that these two separate actions synergize to induce cancer cell death in acute myeloid leukemia (AML) cell and animal models. Owning to the effectiveness of SKI-178, we sought to further refine the chemotype while maintaining "on-target" SKI and MDA activities. Herein, we modified the "linker region" between the substituted phenyl rings of SKI-178 through a structure guided approach. These studies have yielded the discovery of an SKI-178 congener, SKI-349, with log-fold enhancements in both SphK inhibition and cytotoxic potency. Importantly, SKI-349 also demonstrates log-fold improvements in therapeutic efficacy in a retro-viral transduction model of MLL-AF9 AML as compared to previous studies with SKI-178. Together, our results strengthen the hypothesis that simultaneous targeting of the sphingosine kinases (SphK1/2) and the induction of mitotic spindle assembly checkpoint arrest, via microtubule disruption, might be an effective therapeutic strategy for hematological malignancies including AML. |
Databáze: | OpenAIRE |
Externí odkaz: |