Approximation of exit times for one-dimensional linear diffusion processes

Autor: Samuel Herrmann, Nicolas Massin
Přispěvatelé: Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB)
Rok vydání: 2020
Předmět:
Zdroj: Computers & Mathematics with Applications
Computers & Mathematics with Applications, Elsevier, 2020, 80 (6), pp.1668-1682. ⟨10.1016/j.camwa.2020.07.023⟩
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2020.07.023
Popis: International audience; In order to approximate the exit time of a one-dimensional diffusion process, we propose an algorithm based on a random walk. Such an algorithm was already introduced in both the Brownian context and the Ornstein-Uhlenbeck context, that is for particular time-homogeneous diffusion processes. Here the aim is therefore to generalize this efficient numerical approach in order to obtain an approximation of both the exit time and position for a general linear diffusion. The main challenge of such a generalization is to handle with time-inhomogeneous diffusions. The efficiency of the method is described with particular care through theoretical results and numerical examples.
Databáze: OpenAIRE