Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
Autor: | G. Castiñeira, Á. Rodríguez-Arós, M.T. Cao-Rial, S. Roscani |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Surface (mathematics) Asymptotic analysis Mechanical Engineering Mathematical analysis purl.org/becyt/ford/1.1 [https] Zero (complex analysis) 02 engineering and technology ASYMPTOTIC ANALYSIS 01 natural sciences Domain (mathematical analysis) THERMOELASTODYNAMICS purl.org/becyt/ford/1 [https] 010101 applied mathematics 020303 mechanical engineering & transports Membrane Thermoelastic damping 0203 mechanical engineering Mechanics of Materials ELLIPTIC MEMBRANE SHELLS Convergence (routing) General Materials Science Limit (mathematics) 0101 mathematics |
Zdroj: | JOURNAL OF ELASTICITY CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
ISSN: | 1573-2681 0374-3535 |
DOI: | 10.1007/s10659-021-09820-0 |
Popis: | In this paper we consider a family of three-dimensional problems in thermoelasticity for elliptic membrane shells and study the asymptotic behaviour of the solution when the thickness tends to zero. We fully characterize with strong convergence results the limit as the unique solution of a two-dimensional problem, where the reference domain is the common middle surface of the family of three-dimensional shells. The problems are dynamic and the constitutive thermoelastic law is given by the Duhamel-Neumann relation. Fil: Cao Rial, M. T.. Universidade da Coruña; España Fil: Castiñeira, G.. Universidad de Vigo; España Fil: Rodríguez Arós, Á.. Universidade da Coruña; España Fil: Roscani, Sabrina Dina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |